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Abstract. We expose a series of exact mappings between particular cases
of four statistical physics models: (i) equilibrium 1D lattice gas with nearest-
neighbor repulsion, (ii) (1 + 1)D combinatorial heap of pieces, (iii) directed
random walks on a half-plane, and (iv) 1D totally asymmetric simple exclusion
process (TASEP). In particular, we show that generating function of a 1D steady-
state TASEP with open boundaries can be interpreted as a quotient of partition
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functions of 1D hard-core lattice gases with one adsorbing lattice site and neg-
ative fugacity. This result is based on the combination of a representation of a
steady-state TASEP configurations in terms of (1 + 1)D heaps of pieces (HP)
and a theorem of X Viennot which projects the partition function of (1 + 1)D
HP onto that of a single layer of pieces, which in this case is a 1D hard-core
lattice gas.

Keywords: exact results, exclusion processes, growth processes
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1. Introduction

The totally asymmetric simple exclusion process (TASEP) is a stochastic process involv-
ing a concentration of hard-core particles which perform random, totally directed walks
on a regular one-dimensional lattice subject to the constraint that each lattice site may
sustain at most one particle. More specifically, updating rules are defined as follows:
each particle attempts to jump to the neighboring lattice site on its right with a given
rate, which can be chosen as 1 without any loss of generality, and the jump is actually
fulfilled if and only if the target site is empty at this time instant, otherwise the jump
is rejected. The jumps in the opposite direction are forbidden. The model possesses a
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Figure 1. TASEP on a chain containing N = 11 sites. The chain is attached to a
reservoir of particles at j = 1 which ‘adds’ particles to the system with the constant
rate α whenever this site is empty. The particles are removed from the system with
the constant removal rate β at the site j = N .

particle–hole symmetry, i.e. it is symmetric with respect to a simultaneous replacement
of particles with holes and vice versa and an inversion of the direction of motion. A
detailed introduction, definitions and a review of important results obtained for this
process can be found in [1].

TASEP on a finite chain of N sites attains a non-equilibrium steady state which
depends on the boundary conditions used. The two most typical choices of the latter
are: (a) periodic boundary conditions, i.e. the chain forms a ring so that the number
of particles initially introduced into the system is conserved, and (b) the chain has
open boundaries: on the left extremity it is attached to an infinite reservoir of particles
maintained at a constant chemical potential, while on the right extremity there is another
infinite reservoir, which also has a constant chemical potential, smaller than the one on
the left. Consequently, the particles are injected into the system on the left boundary
at a constant rate α provided that this leftmost site (with j = 1) is empty at this
time instant and, whenever they reach the rightmost site j = N they are removed with
a constant rate β. A sketch of such a model is presented in figure 1. Note that in the
former case the steady state is very simple: all configurations respecting the conservation
of the number of particles are equiprobable (see, e.g. [2]). On contrary, in the latter case
the system evolves towards an out-of-equilibrium steady-state with a non-trivial particle
density distribution, which has been determined via a matrix ansatz in [3]. Concurrently,
combinatorial interpretations of the steady-state weights of different configurations have
been obtained earlier in terms of pairs of paths (for α = β = 1) in [4], and also in terms
of weighted permutation tableaux [5] and weighted binary trees [6].

In this paper we demonstrate that the generating function of a steady-state TASEP
with open boundaries can be represented in terms of partition functions of a 1D hard-
core lattice gas at a negative fugacity (i.e. at a purely imaginary chemical potential)
and with one adsorbing lattice site. To show that we exploit a bijection (first discussed
in [7]) between the TASEP and the so-called ‘heaps of pieces’ (HP) model [8]. Further
on, we take advantage of a theorem which links the HP model and a certain model of a
lattice gas of hard-core objects, first established by Viennot in [8].

The paper is organized as follows. In section 2 we remind the matrix ansatz for
the TASEP with open boundaries. In section 3 we describe the HP model, present the
definitions of the so-called Mikado ordering and of the �Lukasiewicz paths and establish
a connection between the TASEP and the HP model via a direct enumeration of the
Mikado orderings. Next, in section 4 we recall the Viennot theorem and eventually show
that the generating function of the steady-state TASEP on a chain with open boundaries
can be represented in terms of partition functions of a 1D hard-core lattice gas with a
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negative fugacity, one adsorbing site and a special kind of boundary conditions. Finally,
in the discussion we present a brief summary of the results and outline some open
questions. In appendix A we recall the approach to an enumeration of (1 + 1)D heaps
based on the geometric group theory, and in appendix B we outline the connection
between �Lukasiewicz paths introduced in the main text, the Brownian excursions and
the Young tableaux (YTs).

2. Matrix ansatz for the TASEP on a chain with open boundaries

We start by recalling the matrix ansatz for the steady state of the TASEP model on
an N -site chain with constant entrance, α, and exit, β, rates [3]. To this end, we first
introduce two formal operators D and E, which satisfy the relation

DE = D +E, (1)

and two vectors 〈Vout| and |Vin〉, such that

D|Vin〉 = β−1|Vin〉 ; 〈Vout|E = α−1〈Vout|. (2)

Then, the probability of observing any given configuration in the steady state is propor-
tional to a matrix element of the form 〈Vout| . . . |Vin〉, where in place of dots one should
insert a sequence of N operators D and E, with D and E corresponding to occupied
and empty sites, respectively. To write this down in more formal terms, introduce occu-
pation numbers of the sites of a chain, σi, (1 � i � N), such that σi = 1 if the ith site is
occupied by a particle and σi = 0, otherwise, and define the probability P (σ|t) to have
a set of occupation numbers, σ = {σ1, σ2, . . . , σN} at time instant t. In the steady state,

d

dt
P (σ|t) = 0. (3)

Dropping the argument t, one writes next the probability P (σ) in the steady state as
follows

P (σ) =
1

ZN (α, β)
f(σ), (4)

where the weight f(σ) of the configuration {σ1, σ2, . . . , σN} is

f(σ) = 〈Vout|
N∏
i=1

(σiD + (1− σi)E) |Vin〉 . (5)

For example, the weight f({σ}) of the configuration shown in figure 1 is f =
〈Vout|EDEDDDEDEED|Vin〉. The normalization factor ZN , which is often called the
(non-equilibrium) partition function, is given by
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ZN (α, β) =
∑

τ1={0,1}

. . .
∑

τN={0,1}

f(τ1, τ2, . . . , τN) = 〈Vout| (D + E)N |Vin〉 . (6)

Except for some particular values of α and β, the algebra defined by (1) and (2) has
no finite-dimensional representations. However, there exist many infinite-dimensional
ones, among which the most interesting for us is the one constructed in the following
way. Take

〈Vout| = (1,α−1,α−2,α−3, . . . ), 〈Vin| = (1, 0, 0, 0, . . .) (7)

and choose the infinite-dimensional matrices D and E in the form

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

β

1

β

1

β

1

β

1

β

1

β
. . .

0 1 1 1 1 1 . . .
0 0 1 1 1 1 . . .
0 0 0 1 1 1 . . .
0 0 0 0 1 1 . . .
0 0 0 0 0 1 . . .
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 0 1 0 0 0 . . .
0 0 0 1 0 0 . . .
0 0 0 0 1 0 . . .
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(8)

Then it can be checked directly that both conditions (1) and (2) are fulfilled. In what
follows we show that the partition function (6) can be interpreted as a result of a direct
enumeration of weighted heaps of pieces (HP) in (1 + 1)D for some special choice of
weights of heaps.

3. Connection between the TASEP and the HP model

3.1. Definition of the HP model

A heap of pieces (HP) is a collection of elements which are piled together along the
vertical axis. If two elements intersect or touch each other in their horizontal projections,
then the resulting heap depends on the order in which these two were placed: the element
which is placed second is above the element placed first. Such rules resemble the famous
tetris computer game, in which pieces of various shapes are dropped down along vertical
direction until they hit the already deposited elements.

A heap has a base—a set of all possible positions in the direction orthogonal to
the vertical axis. Bases of various forms can be considered, including lattices in various
dimensions, and, more generally, for any fixed graphs. In turn, shapes of pieces can
also be different, as well as rules of their interactions. Apparently, the concept of a
heap of pieces has been first proposed in 1969 in the work of Cartier and Foata [9] in
which they considered monoids generated by some alphabet with special commutation
relations. Variety of models, as well as new combinatorial results and their links with
the statistical physics were reviewed in [8]. The (1 + 1)D HP model on square and
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Figure 2. A sketch of a particular configuration of a heap with N = 11 pieces in a
bounding box of size n = 5.

triangular lattices have been exhaustively studied in the literature and played the role
of a testing ground for several approaches—from purely combinatorial [8, 10, 11], to the
ones based on the diagonalization of the spatial transfer matrix and the Bethe ansatz
computations [12–16].

Apart from the enumeration of growing heaps, some other problems in pure math-
ematics and in mathematical physics are connected to the HP model. For example,
various aspects [12, 17–19] of the enumerative combinatorics of partitions are related
to a growth of (1 + 1)D HP. In [20] the statistics of growing heaps has been linked to
the statistics of two-dimensional growing braids, in [21] the general asymptotic theory
of directed two-dimensional lattice paths in half-planes and quarter-planes has been
reviewed.

One of the main questions in the study of the HP problem is the analysis of an
asymptotic behavior of the partition function

ZN ∼ NθΛN , (9)

which enumerates all allowed distinct configurations of N -particle heaps (N →∞) over
a given base graph. In case when the base is a D-dimensional lattice of a linear extent
n, the critical exponent, θ, is universal and depends only on the space dimensionality,
while Λ depends on n, on the lattice geometry, the shape of the pieces, and also on
the way how the interactions between them are defined. Here we discuss the heaps of
square pieces which cannot touch each other by their side faces, top and bottom faces
are allowed to touch (see figure 2 for a typical configuration of such a heap).

One can imagine a heap of pieces as in figure 2 resulting from some deposition process
with pieces falling down from y = +∞ until they reach the lowest possible position
respecting the constraint that no pieces have common vertical faces. Numbers inside the
falling blocks designate sequential discrete moments of time at which corresponding piece
is added to a heap. However, there is an important distinction between the enumeration
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of configurations in HP and the enumeration of different states in a sequence of falling
blocks. In the HP problem, as described above, we are interested in the total number of
possible configurations, which respect the rules of a heap’s formation (in this case—the
absence of touching side faces of the squares). Thus we imply that all allowed heaps
have equal weights. On the other hand, in a deposition problem, although the total set
of allowed heaps is the same, there is no such equiprobability: some heaps are obtained
more often than others. Let us therefore stress that in what follows we consider just the
combinatorial HP problem rather than the dynamical deposition one.

There exists a connection (first revealed in [7]) between the partition function of
the (1 + 1)D heap of square pieces with no touching vertical faces and the partition
function of a steady-state of the TASEP with open boundary conditions. We describe
this connection in the subsequent parts of this section.

3.2. Mikado ordering and transfer matrix approach to the HP model

Let us outline the computations of the partition function ZN (n) of the (1 + 1)D heap
of square pieces of the type shown in figure 2. First, we introduce a unique enumeration
of heaps, then we show that, given that enumeration, it is possible to write a transfer
matrix equation for ZN (n). Finally, we notice that this equation resembles the one for
the partition function of the TASEP with open boundaries.

As we noticed above, each heap can be thought of as a result of some deposition
process. However, as it is shown in figures 3(a) and (b) different deposition sequences
(depicted by numbers inside the pieces) can lead to a same geometrical heap. It is thus
essential to define a rule allowing to enumerate pieces of a heap in a unique way. To
do that, note that each heap has at least one piece which satisfies the following two
conditions: (i) if it is removed the remaining part is itself a valid heap, and (ii) if it
is redeposited (i.e. deposited from above into the same column), the original heap is
recovered. We call the set of such ‘allowed’ pieces the ‘roof’ of a heap. In order to
enumerate pieces in a unique way we proceed as follows. We fix the position of the
rightmost element in the roof of the heap and remove this piece. The remaining heap
has one piece less, and it itself has an updated roof, so one can repeat the removal
procedure until the heap gets empty. As a result, e.g. for the heap shown in figure 4(c),
we get the following order of removed pieces

←−
W = g4g5g1g2g3g4g5g2g2g3g1g1, (10)

where we use letters (‘generators’, in notations of appendix A where a discussion of
the underlying group-theoretical construction is outlined) gi to denote pieces in the
ith column. We call such an enumeration procedure the Mikado ordering because it
resembles the famous Mikado game, the goal of which consists in a sequential removal
of sticks from a pile, one-by-one, without disturbing the rest of a pile. By construction,
each heap has a unique Mikado ordering. Moreover, inverse Mikado ordering

−→
W = g1g1g3g2g2g5g4g3g2g1g5g4, (11)

corresponds to a specific sequence of deposition of pieces that results in a heap shown
in figure 3(c). This proves that each Mikado ordering produces a unique heap, i.e. there
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Figure 3. Particular realization of a heap. The heap in (a) is obtained by the
sequential dropping of bricks and spells as a word Wa = g3g1g5g1g2g4g5g2g3g4g2g1;
the same heap in (b) is obtained by the sequential dropping of bricks correspond-
ing to another sequence Wb = g5g3g4g5g1g1g2g2g3g2g1g4; (c) the unique ‘Mikado
ordering’ of pieces, see the text for description.

Figure 4. (a) �Lukasiewicz path corresponding to the Mikado ordering shown in
figure (c). (b) The allowed steps of the �Lukasiewicz walk: if gx is followed by gy, y
cannot be larger than x+ 1.

is a one-to-one correspondence between heaps and their Mikado orderings. So, given a
particular configuration of a heap (no matter how it is created), we associate with it a
unique sequence of letters constructed according to Mikado rule.

It is natural to represent the Mikado orderings by graphs as shown in figure 4, where
the horizontal coordinate is the position of a piece in the Mikado ordering (ordered
from right to left as in (10)) and the vertical coordinate is the coordinate of a piece
(index of the generator g). One can interpret such graphs as some discrete-space walks
on the x = 1, . . . ,n interval. On each step a walker either goes up making an arbitrary
number of steps, or stays at the same position, or goes one step down. Paths satisfying
these conditions are known in the literature [22, 23] as the �Lukasiewicz paths. Clearly,
there is one-to-one correspondence between such paths and the Mikado-ordered HPs.
Interestingly, there exists a mapping between the �Lukasiewicz paths, the standard Dyck
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paths (discrete one-dimensional directed walks for which only increments of ±1 are
allowed) and the YTs, we discuss this connection in appendix B.

Now, it is possible to calculate the number of Mikado orderings (and thus, the total
number of heaps) as follows. Let ZN (x, x0|n) be a total number of heaps with the
Mikado ordering of pieces starting with a piece positioned at x and ending with a piece
positioned at x0 (1 � x, x0 � n). The function ZN (x, x0|n) satisfies the recursion scheme
of the form⎧⎪⎨

⎪⎩
ZN+1(x, x0|n) =

x+1∑
x′=1

ZN (x
′, x0|n), x = 1, . . . ,n ;

ZN=0(x, x0|n) = δx,x0 .

(12)

Indeed, the Mikado ordering dictates that on each step one takes the rightmost piece
off the roof of the heap. Thus, if at sequential time moments the pieces are removed at
positions x and x′, respectively, then either x− x′ > 1 (both pieces belong to the roof
at the initial step and x is to the right of x′, so it is removed first) or |x− x′| � 1 (piece
in position x originally blocks the piece in position x′, but it gets released after piece
at x is removed). It is easy to verify (see, e.g. [7]) that this constraint is sufficient, i.e.
that any sequence of pieces respecting the rule xi � (xi−1 − 1) for all i = 1, . . . ,N can
be obtained as a valid Mikado ordering (note, however, that the similar statement is not
true for HP in higher dimensions [24]). The allowed sequences of pieces is schematically
depicted in figure 4(c) (see the appendix A for more details).

It is convenient to rewrite the recursion (12) in a matrix form as follows

ZN (x, x0|n) = 〈Xout|TN(n) |Xin〉 ;Xin = (

x0︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0)
,

Xout = (

x︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0),

(13)

where the transfer matrix T (n) reads

T (n) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 . . . 1
1 1 1 1 . . . 1
0 1 1 1 . . . 1
0 0 1 1 . . . 1
...

...
...

. . .
. . . ...

0 0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎠

; (14)

while the partition function enumerating all possible heaps is given by

ZN (n) = 〈Yout|TN (n) |Yin〉 ;

Yin = (1, 1, 1, . . . , 1, 1)
,

Yout = (1, 1, 1, 1, . . . , 1).

(15)

Thus, the growth rate Λ(n) defined by (9) is determined by the largest eigenvalue of the
transfer matrix (14). The corresponding computation has been repeatedly discussed in

https://doi.org/10.1088/1742-5468/ac52a5 9

https://doi.org/10.1088/1742-5468/ac52a5


J.S
tat.

M
ech.

(2022)
033201

From steady-state TASEP model with open boundaries to 1D Ising model at negative fugacity

the literature (see, e.g. [20]), and Λ(n) is given by

Λ(n) = 4 cos2
π

n+ 1

∣∣∣∣
n�1

≈ 4− 4π2

n2
. (16)

In particular, in a large bounding box of base n � 1 the growth rate is saturated at the
value λ∞ = limn→∞Λ(n) = 4.

Now, for our purposes it is essential to notice a striking similarity between
equations (6), (13) and (15). Indeed, in the limit n→∞ the transfer matrix (14) coin-
cides with the matrix (D +E), given by (8) for the case of β = 1. Thus, for n→∞ one
gets

ZTASEP
N (α, β = 1) = α lim

n→∞

n∑
y=1

α−yZHP
N (x = 1|y), (17)

representing the partition function of the TASEP with open boundaries as a weighted
sum over partition functions of HP with the topmost piece at x = 1 (such heaps are
called ‘pyramids’ in Viennot’s notations [8]), and we took into account the particular
forms of |Vin〉, 〈Vout| given by (7) to arrive at the formula (17).

3.3. Weighted �Lukasiewicz paths and TASEP-HP analogy for β = 1

It is easy to generalize (17) to the case of arbitrary β, one just needs to assign an
additional weight β−1 to a heap every time when there appears a piece with coordinate
x = 1. One can rationalize this by considering an adsorbing vertical wall at x = 0, so
that the pieces in the leftmost column acquire an additional energy compared to the
pieces in other columns. In the �Lukasiewicz path interpretation (see figure 5) it means
that each path acquires the weight β−1 every time when it touches the horizontal axis.
This problem can be reinterpreted as an adsorption of an ideal polymer at a point-like
potential well [25] in 1D. Similar weighted sums over random walk trajectories arise in
the context of wetting [26], or path-counting on regular graphs with a defect [27, 29].
As a result, one gets the following mapping

ZTASEP
N (α, β) = lim

n→∞
〈Vout|Tβ(n)

N |Vin〉 = αβ
∑

all pyramids of size N

α−yβ−(#(x=1)),

(18)

where the summation runs over all configurations of pyramids of N pieces, y is the
coordinate of the last piece in the Mikado ordering (i.e. the leftmost piece in the lowest
layer), and #(x = 1) is the number of pieces with the coordinate x = 1. For example,
both pyramids shown in figure 5 have weight α−1β−1 because the coordinate of the
leftmost piece in the lowest layer is y = 2 and there are two pieces with coordinate
equal to 1.

Note that despite this mapping, there is no one-to-one correspondence between
TASEP configurations and heap configurations. Indeed, while the matrix E (correspond-
ing to an empty site in the TASEP setting) can be identified with a descending step of
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Figure 5. Two examples of HP pyramids (right) and their corresponding
�Lukasiewicz paths (left). Note that, according to the mapping introduced in the
text, these two configurations correspond to the same TASEP configuration shown
below. If the ‘�Lukasiewicz walker’ touches the bottom line x = 1, it gets the weight
β−1 and the very first step, gx0

, carries the weight α1−x0 . The last step is always at
the position xN = 1.

the corresponding �Lukasiewicz path, the matrix D corresponds to the summation over
all permitted horizontal or ascending steps in the path. Thus, the weight of a given
N -particle TASEP configuration can be calculated as a weighted sum within the HP
model according to the following rules:

(a) Summation over HP configurations runs over all possible Mikado ordered sequences
with N + 1 pieces, in which the first piece is g1, any sequence gigk with k � i
corresponds to a particle, and a sequence gigi+1 corresponds to a hole at the
corresponding position of the TASEP configuration,

(b) The first letter, gy, in the normally ordered word carries a weight α−y,

(c) Each generator g1 carries a weight β−1,

(d) Weight of all other generators is 1,
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(e) In order to obtain standard form of the weight one should multiply the result by
αβ. However, since all weights are defined up to a common multiplicative content,
this last step bears no additional meaning and is done only for the purposes of
comparison with the conventional formulae [3].

3.4. Generating function of the stationary TASEP via enumeration of weighted heaps

Given the specific form of the transfer matrix

Tβ(n) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

β

1

β

1

β
. . .

1

β

1

β
1 1 1 . . . 1 1
0 1 1 . . . 1 1
0 0 1 . . . 1 1
...

...
...

. . . ...
...

0 0 0 . . . 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (19)

it is possible to calculate the right-hand side of (18) exactly. The result is, of course,
known [3] but it is instructive: (i) to provide a calculation of the matrix element
〈Vout|Tβ(n)

N |Vin〉 for arbitrary n and (ii) to discuss the interpretation of the well-known
stationary TASEP phases in terms of the HP model and the �Lukasiewicz paths.

Consider vector ZN = (ZN(1),ZN(2), . . . ,ZN(n))

 defined by recurrence relation

ZN+1 = Tβ(n)ZN ; ZN=0 = Vin = (1, 0, . . . , 0, 0)
 (20)

and introduce a generating function W (s) ≡ (W (s, 1),W (s, 2), . . . ,W (s,n))
 =∑∞
N=0 ZNs

N . Then

1

s
(W(s)− Z0) = Tβ(n)W(s) ; W(s) = −(sTβ(n)− I)−1Z0, (21)

where I is the identity matrix. The elements of vector W(s) can be obtained as

W (s, k) =
detB(k)

det
(
Tβ(n)− 1

s
I
) =

vn,k
un

, (22)

where the matrix B(k) is obtained from (Tβ(n)− 1
s
I) by replacing the kth column with

(−1/s, 0, . . . , 0, 0)
:

B(k) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1/β − 1/s 1/β . . . −1/s . . . 1/β
1 1− 1/s . . . 0 . . . 1
0 1 . . . 0 . . . 1
0 0 . . . 0 . . . 1
...

...
...

...
. . . ...

0 0 . . . 0 . . . 1− 1/s

⎞
⎟⎟⎟⎟⎟⎟⎠

, (23)

and vn,k and un are the short-hand notations for the numerator and denominator of (22),
respectively. The denominator un satisfies, with respect to n, the following recurrence
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relations ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

un+2 = −1

s
un+1 −

1

s
un ;

u0 = 1 ;

u1 =
1

β
− 1

s
.

(24)

The solution of (24) has a form

un = C1p
n
1 + C2p

n
2 , (25)

where p1 and p2 are the roots of the quadratic equation

p2 = −1

s
p− 1

s
(26)

and C1 and C2 are determined from the initial conditions u0 = C1 + C2,
u1 = C1p1 + C2p2. After some algebra one gets

un = un(s, β) =
1
β
− 1

s
− p2

p1 − p2
pn1 −

1
β
− 1

s
− p1

p1 − p2
pn2

=
s√

1− 4s

((
p1 +

1

β

)
pn1 −

(
p2 +

1

β

)
pn2

)
, (27)

where

p1,2 =
−1±

√
1− 4s

2s
. (28)

In turn, the determinants in the numerator of (22), vn,k = detB(k), can be expressed
as:

vn,k(s) =
(−1)k

s
un−k (s, β = 1). (29)

Introduce now a generating function

Ξn(s,α, β) =

∞∑
N=0

〈Vout|Tβ(n)
N |Vin〉sN =

n∑
k=1

W (s, k)α−k+1, (30)

and substitute equations (22), (27) and (29) into Ξn(s,α, β) to get

Ξn(s,α, β) = −1

s

(p1 + 1) p
n
1−(−α)−n

p1+α−1 − (p2 + 1) p
n
2−(−α)−n

p2+α−1

(p1 + β−1)pn1 − (p2 + β−1)pn2
. (31)

In the vicinity of s = 0 (31) has a well-defined limit for n→∞
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Ξ(s,α, β) =
∞∑

N=0

ZTASEP
N (α, β)sN = lim

n→∞
Ξn(s,α, β) = − 1

s

p2 + 1

(p2 + α−1)(p2 + β−1)

= 2

√
1− 4s+ 1− 2s(√

1− 4s+ 1− 2sα−1
) (√

1− 4s+ 1− 2sβ−1
) , (32)

which generates partition functions of stationary TASEP. Note the α ↔ β symmetry
arises in the n→∞ limit (32), while the expression (31) does not have this symmetry
for any finite n (indeed, it is a polynomial in α−1 but an infinite series in β−1). The large-
N behavior of the partition function ZTASEP

N (α, β), and, in particular, the stationary flow,

I = lim
N→∞

〈Vout|TN−1|Vin〉
〈Vout|TN |Vin〉

= lim
N→∞

ZN−1(α, β)

ZN (α, β)
, (33)

is controlled by the smallest (in terms of absolute value) singularity of Ξ(s,α, β).
Depending on the particular values of α and β it could be:

(a) the square root singularity, I∗ = s1 = 1/4, corresponding to the maximal flow phase,

(b) the pole I∗∗ = s2(β) = β(1− β) corresponding to the high density phase,

(c) the pole I∗∗∗ = s3(α) = α(1− α) corresponding to the low density phase.

The transition between these phases occurs at

s1 = s2(β)→ β = 1/2 ;

s1 = s3(α)→ α = 1/2 ;

s2(β) = s3(α)→ β = α ;

(34)

in full agreement with [3].
It is instructive to discuss the interpretation of the TASEP phase transitions (34) in

terms of the �Lukasiewicz paths. The three phases of the stationary TASEP described
above (maximal flow, high density and low density) correspond to situations in which
typical �Lukasiewicz paths are: (i) freely diffusing, (ii) pinned to the absorbing wall,
and (iii) fully elongated, respectively. The transition between the diffusive and pinned
states indeed is known to occur at a pinning weight β−1 = 2 (see, e.g. [27]). In [28] it was
shown that the path confined between two adsorbing walls with pinning weights β−1,α−1

is analogous to the TASEP with open boundaries. Here, instead of adsorption to the
second wall we have an elongated phase of �Lukasiewicz paths, which can be thought of
as a result of paths’ stretching in external field acting on the first link of the path. The
transition between this force-induced phase and the adsorbed phase resembles to some
extent the unzipping of DNA under external force [30, 31].

The TASEP—�Lukasiewicz paths correspondence also elucidates the α→ β symme-
try, i.e. the symmetry between the attractive field U(x) = δ1,x log β, acting on all links
of the �Lukasiewicz paths at a single point x = 1, and the repulsive field V (x) = x logα
acting only on the end link of the �Lukasiewicz path but at any x. To the best of our
knowledge, this rather nontrivial symmetry has never been discussed before.
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4. TASEP and HP from the underlying lattice gas

4.1. Viennot theorem

In this section we have explained how the HP problem and the steady-state TASEP
are connected (by virtue of the mapping described in the previous section) with the
partition function of a one-dimensional gas of particles with hardcore interactions. This
connection is based on a theorem first proved in [8], which links the generating function
of a heap of pieces with the generating function of a single layer of the heap. We start
with stating the general formulation of the theorem, and then apply it for the particular
case of the heap of square pieces with no common vertical sides.

Assume that ZN is a partition function of a heap constructed over some given graph G
as a base, where the vertices of the graph G designate possible locations of the elementary
pieces, and the edges of the graph designate the vertices which cannot be simultaneously
occupied in a single layer (in our particular case the graph is just a chain of n vertices).
Let Ξ(s) be the corresponding generating function (grand canonical partition function):

Ξ(s) =

∞∑
N=1

ZNs
N ≡

∑
allowed configurations

s# of pieces. (35)

Define also the partition function Θ(k) of all possible distinct configurations of k ele-
mentary pieces in a single layer, i.e. all possible subsets of k vertices of G, such that
no edge has both its ends included into the subset, and the corresponding generating
function

Ω(s) = 1 +

kmax∑
k=1

Θ(k)sk, (36)

where kmax is the maximal possible size of such a subset. In this formulation Ω(s) is the
partition function of a hard-core lattice gas on G with fugacity s.

Then the theorem [8] states that

Ξ(s) =
1

Ω(−s)
. (37)

For completeness, we present here a sketch of the proof. Consider the product Ξ(s)Ω(t),
which enumerates configurations in the direct product of:

(a) The set of all possible heaps , enumeration of whose pieces is generated by s,

(b) The set of all possible single layers , enumeration of whose pieces is generated by t.

For brevity, call the first set ‘a heap of s-pieces’, and the second set—‘a layer of
t-pieces’. Consider now an element of the direct product (i.e. a pair of a heap and a
layer), and put the heap on top of the layer, i.e. put the layer at the bottom floor, so
that all t-pieces have vertical coordinate 0, and then put the heap on top of it (i.e. shift
all vertical coordinates of the elements of the heap by 1). The resulting configuration
is, generally speaking, not a heap of pieces itself: it is possible that some pieces of the
s-heap are not supported from below by the elements of the t-layer. If it is the case, we
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Figure 6. Sample configurations of particles with hard-core interactions on a seg-
ment (D = 1) (a) and on a square lattice (D = 2) (b). Particles are denoted by
filled elementary units (small circles for chain, squares for two-dimensional lattice),
crosses mark positions which are forbidden for the particles.

allow such pieces to fall down to the underlying layer until no further rearrangements are
possible. The generating function of all resulting structures can be written in a following
way

Ξ(s)Ω(t) =
∑
α

tnα

∑
β

snβFα,β(s), (38)

where α and β enumerate all possible configurations of t- and s-pieces in the lowest layer
(i.e. the combination of t-pieces being the original layer configuration, and combination
of s-pieces no matter where they fell from the upper layer), nα,β are the respective
numbers of pieces in the lowest layer, and Fα,β(s) is the generating function of all heaps
that can be placed on top of a fixed lowest layer configuration. Now, the crucial idea is
that Fα,β(s) is a function of only the total configuration of the lowest layer, α ∪ β, and
not of the way how the pieces are separated into s-type and t-type. Therefore,

Ξ(s)Ω(t) =
∑
α∪β

Fα∪β(s)
∑
α

tnαsnβ =
∑
α∪β

Fα∪β(s)(s+ t)nα∪β , (39)

where the first sum runs over all possible configurations of the lowest layer, and the
second—over all possible separations of lowest level pieces into s- and t-types. The
last equation allows for the fact that each piece can be assigned to either s- or t-type
independently of others. Note now, that (39) is radically simplified for t = −s. Indeed,
only the term with nα∪β = 0 (i.e. which corresponds to an empty layer and an empty
heap) survives, and therefore

Ξ(s)Ω(−s) = 1, (40)
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completing the Viennot’s theorem.
The function ZN can be obtained from Ξ(s) in a standard way

ZN =
1

2πi

∮
Ξ(s)

sN+1
ds (41)

and, therefore, the growth rate, i.e. the leading large-N asymptotics of the partition
function (9) is controlled by the singularity of Ξ(s) with the smallest absolute value.
Taking into account (37) this means that

Λ = −s−1
∗ , (42)

where s∗ is negative and the smallest in absolute value number (among all zeros and
non-pole singularities of the generating polynomial Ω(s)).

By virtue of (40), the combinatorics of (D + 1)-dimensional HPs can be reformulated
as a problem of calculating the grand canonical partition function of a D-dimensional
‘hard-square lattice gas’, which in turn can be thought of as a D-dimensional Ising
model with finite magnetic field in the limit of strong anti-ferromagnetic coupling.

The negative Yang–Lee zero closest to the origin is associated with a point where
the thermodynamic functions of a hard-core gas in the thermodynamic limit are known
to exhibit a ‘non-physical’ singularity on the negative real fugacity axis [32–35]. This
point sometimes is called ‘the Lee–Yang critical point’ [36]. This is a remarkably general
feature of systems with repulsive interactions, which have pressure function singularities
for complex values of the chemical potential (see, e.g. [37]). It was argued that systems
with repulsive interactions possess universal properties associated with the dominant
singularity of the Mayer fugacity series [38, 39]. Subsequently, it was shown that indeed
this singularity can be identified with the Yang–Lee edge singularity [40, 41].

4.2. Generating function of a 1D hard core lattice gas with an adsorbing site

Viennot theorem, as described above, is formulated for heaps with identical layers and
is directly applicable to the unweighted and unrestricted heaps. In the terminology of
section 3 the statement of the theorem can be written as follows

ΞHP
n (s) =

∞∑
N=0

ZHP
N ,n(β)s

N = Ω−1
n (−s, β), (43)

where ZHP
N ,n(β) is the total partition function of all heaps in the n×∞ box with adsorbing

right wall,

ZHP
N ,n(β) = 〈1, 1, . . . , 1|TN

β (n)|1, 1, . . . , 1〉, (44)

Tβ(n) is given by (19), and Ωn(s) is the grand partition function of the cor-
responding one-layer problem, i.e. a 1D lattice gas with hard-core interactions
(two pieces cannot occupy adjacent sites, see figure 6 for 1D and 2D exam-
ples of such a gas) and statistical weight β−1 associated with the leftmost site
(n here is the number of accessible lattice sites). For β = 1 this partition function obeys
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the equation

Ωn+2(s, 1) = Ωn+1(s, 1) + sΩn(s, 1), Ω0 = 1, Ω1 = 1 + s. (45)

Solving (45) similarly to (24), we get

Ωn(s, 1) =
1 + s− q2
q1 − q2

qn1 −
1 + s− q1
q1 − q2

qn2 ; q1,2 =
1±

√
1 + 4s

2
. (46)

In the general case Ωn(s, β) satisfies the recursion

Ωn(s, β) = Ωn−1(s, 1) +
s

β
Ωn−2(s, 1). (47)

Substituting (46) into (47) and collecting the terms leads to the following expression for
Ωn(s, β):

Ωn(s, β) =
1√

1 + 4s

((
q1 +

s

β

)
qn1 −

(
q2 +

s

β

)
qn2

)
; q1,2 =

1±
√
1 + 4s

2
.

(48)

Together with (43) this allows to recover the grand partition function of a heap of pieces

ΞHP
n (s, β) = Ω−1

n (−s, β). (49)

Note that despite the formal presence of square roots in (48), Ωn(s, β) is a polynomial
of order �(n+ 1)/2� in s, and thus the growth rate of the HP is controlled by its largest
negative zero. Thus, the growth rate of a HP, given by (16) in the case of β = 1, is
governed by the Lee–Yang zero of the partition function of the corresponding one-
dimensional gas. To check this correspondence, we invite the reader to re-derive (16)
directly from (48).

Now, the mapping described in section 3 links the weights of TASEP configurations
in the stationary state with the enumeration of weighted pyramids in the HP problem.
Weighted pyramids are not heaps of identical layers, and thus Viennot theorem is not
directly applicable to them. However, the partition function of pyramids Ξn(s,α, β),
given by (30), which converges to the generating function of stationary TASEP in the
large n limit, is very similar to the partition function of all HP configurations (43)
and (44), essentially they correspond to different matrix elements of the same matrix

(sTβ(n)− I)
−1

(see (21)). It is therefore not surprising that the determinant of this
matrix is

det (sTβ(n)− I) = snun(s, β) = Ωn(−s, β). (50)

Recall that the partition function, Wn(s, k), of all the pyramids which have the last
piece at position k, is a quotient of such determinants (see (22) and (29))
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Wn(s, k) =
vn,k
un

=
(−1)k

s

un−k(β = 1)

un(β)
= (−1)ksk−1Ωn−k(−s, 1)

Ωn(−s, β)
. (51)

Thus, the partition function of weighted pyramids (31) can be written in terms of
the partition function of the 1D ideal gas with hard-core interaction Ωn(−s, β). Indeed,

Ξn(s,α, β) = −
(
− s

α

)n−1 1

Ωn(−s, β)

n∑
k=1

(
−α

s

)n−k

Ωn−k(−s, 1)

= −
(
− s

α

)n−1 Ω̃n(−s,−α/s)

Ωn(−s, β)
, (52)

where we introduced the partial generating function

Ω̃n(s, t) =

n−1∑
m=0

Ωm(s, 1)t
m. (53)

Note that Ω̃n(−s,−α/s) is, with respect to 1/s, a polynomial of power n− 1, so
Ξn(s,α, β) converges to a finite value for s→ 0. It is possible to take the large n limit of
this expression explicitly and get back to the formula (32) for the grand partition func-
tion of the stationary TASEP, Ξ(s,α, β) = limn→∞ Ξn(s,α, β) (not once again that the
α ↔ β symmetry appears only in the limiting formula). This establishes the desired con-
nection between the TASEP problem with free boundary conditions and the partition
function of a 1D hard-core lattice gas on a strip with adsorbing boundary.

5. Discussion

In this paper we studied the multiple connections among basic classical models of sta-
tistical physics: (i) the 1D lattice gas with hard-core interactions, (ii) the 1D TASEP
with open boundary conditions, (iii) the problem of (1 + 1)D heaps enumerations of
square pieces with hard-core repulsion in the horizontal direction, and (iv) an ideal
(1 + 1)D polymer chain represented by a �Lukasiewicz path. By exploiting various map-
pings between these problems, and the X Viennot theorem connecting partition functions
of a heap of pieces and that of a single layer of pieces, we were able to show eventually
that the partition function of the steady-state TASEP with open boundary conditions
can be expressed in terms of a quotient of partition functions (52) and (53) of a one-
dimensional hard-core lattice gas with an adsorbing site at the boundary and negative
fugacity.

Although all the used individual mappings were already present in the literature,
this final result has not, to the best of our knowledge, been reported before. It provides,
in our opinion, an important advancement of connections between considered statisti-
cal systems. Another interesting and previously unknown mapping is the connection
between the three phases in the steady state TASEP with open boundary conditions,
and the three states of an ideal polymer chain on a half-line with an adsorbing wall and
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an external field acting on the end link. The latter connection highlights a non-trivial
hidden symmetry between adsorbing potential acting on all the links in the vicinity of
the wall, and a repulsive field, which is independent of the distance to the wall, but acts
only onto the end monomer.

Notably, Viennot’s theorem can be exploited further to establish connections between
the Yang–Lee zeros of the D-dimensional lattice gas with excluded volume interactions
and the enumeration of a (D + 1)-dimensional heap of pieces (see [24]). This is a nice
example of a problem in which Yang–Lee zeros have a direct physical meaning.
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Appendix A. Group-theoretical approach to the counting of HP

Here we provide a group-theoretical interpretation of an enumeration of heaps intro-
duced in section 3.1. In figures 3(a) and (b) two particular realizations of a heap of
N = 11 particles are shown. These two examples correspond to different sequential depo-
sitions of pieces but the resulting heaps are geometrically the same. In order to define
the equivalence of heaps, it is instructive to use the following auxiliary construction. Let
Fn be the group (called in [20] the ‘locally-free group’) defined on a set of n generators
{g1, g2, . . . , gn} which obey the following commutation relations

gkgm = gmgk, |k −m| � 2. (A1)

The group element of length N is an arbitrary N -letter word written in terms of gen-
erators {g1, g2, . . . , gn}. Consider the positive semigroup, F+

n of this group, i.e. exclude
all the words of the group which involve inverse generators g−1

j (1 � j � n). Now, there
exists a one-to-one correspondence between configurations of HP and equivalence classes
of words in the semigroup F+

n .
In [20] it has been shown that the partition function of an N -particle heap of pieces

in a 2D bounding box of n columns coincides with the partition function of a special N -
step Markov chain on F+

n . Namely, any configuration of HP can be bijectively associated
with a class of equivalent words in F+

n . Each equivalence class is represented by a unique
word written in a normally ordered sequence of letters-generators of F+

n . Normal ordering
means that generators with smaller indices are pushed to the left when it is allowed by
the commutation relations (A1). Consequently, the word w = gs1gs2 . . . gsN is in normal
form if and only if the indices s1, . . . , sN satisfy the following conditions:

(a) If sN = x(1 � x � n− 1) then sN−1 ∈ {1, 2, . . . , x+ 1}
(b) If sN = n then sN−1 ∈ {1, 2, . . . ,n}.

(A2)
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Let us demonstrate how (A2) works for heaps shown in figures 3(a) and (b). Denote by
gj (1 � j � n) the deposition of a piece into the column j (1 � j � 5). The heap shown
in figure 3(a) is constructed by a consecutive deposition of g1, then g2 etc, so that the
entire heap is encoded by a 11-letter word Wa:

Wa = g3g1g5g1g2g4g5g2g3g4g2g1.

The heap shown in figure 3(b) is obtained by dropping pieces in a different order.
The corresponding word Wb spells:

Wb = g5g3g4g5g1g1g2g2g3g1g1g4.

Although the words Wa and Wb are different, they encode the same configuration
of pieces. To establish the bijection between a heap and a word, we write down words
Wa and Wb in a standard, i.e. ‘normally ordered’ form. Namely, we push the generators
with smaller indices in the words Wa and Wb as left as possible when that is consistent
with the commutation relations (A2). One can straightforwardly verify that after such

a reordering, both words Wa and Wb get transformed into the word
−→
W :

−→
W = g1g1g3g2g2g5g4g3g2g1g5g4. (A3)

Thus, any N -site heap in a bounding box of n columns can be uniquely represented by
a N -letter word ‘spelled’ by the generators of F+

n in a normal order.

Appendix B. �Lukasiewicz paths, Dyck paths and Young tableaux

Here we elucidate the connection between �Lukasiewicz paths used for the enumeration
of HP in the main text, the more conventional Dyck paths, and the YTs (similar map-
ping has been presented in the literature, e.g. in [42]). Consider a �Lukasiewicz path, i.e.
a discrete random walk in (1 + 1)D consisting of steps (1, x) where x is integer and
x � −1, and redraw the walk as follows. Keep all the down steps of the original
�Lukasiewicz path, replace each horizontal step with a sequence of down and up steps,
and each up step of length x replace with a sequence of a single down step and x+ 1
up steps. The resulting trajectory, as shown in figure 7 in the coordinates rotated by
the angle π/4, is nothing but a ordinary (1 + 1)D Dyck random walk, consisting of up
and down steps wit respect to the diagonal of a rotated square. Clearly, this procedure
creates a bijection between �Lukasiewicz and Dyck paths. Note, however, that the length
of the walk is not conserved by this procedure: a �Lukasiewicz path of length N starting
at 0 and ending in a point with vertical coordinate x gets transformed into a Dyck path
of length 2N + x ending in a point with vertical coordinate x. In particular, �Lukasiewicz
excursions of length N (i.e. paths starting and ending at 0) are thus mapped onto Dyck
excursions of length 2N .

From the other hand, the trajectory shown in figure 7 can be viewed as a YT. By
definition, the enveloping shape of the YT should not be concave (in the so-called ‘French
notation’ of YT). Let us enumerate rows above the diagonal in figure 7(b) upside down
and let xt be the length of the tth row. By definition of the YT, the length xt+1 of the
row t+ 1 can take any value from the set {xt − 1, xt, xt + 1, xt + 2, . . . ,n}, where xt is
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Figure 7. (a) The �Lukasiewicz path corresponding to the normally ordered word
g1g1g3g2g2g5g4g3g2g1g5g4 and the heap shown in figure 4; (b) the corresponding
path in skewed coordinates (see text), which can be interpreted as a Dyck path or
a YTs.

the length of the nearest upper row, t. Comparing with the definition of a �Lukasiewicz
path, we conclude that it is a particular realization of a YT, being a rephrasing of the
standard representation shown in figure 7(b).

The shape of the YT in figure 7(b) and the realization of the particular �Lukasiewicz
path shown in figure 7(a) is uniquely encoded by a sequence of generators gi. The YT in
figure 7(a) is represented by the word WYT = g1g1g3g2g2g5g4g3g2g1g5g4 which is nothing
else but the ‘Mikado ordered’ word written in terms of generators of the locally free
semigroup F+, defined in appendix A.
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