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Abstract: Language change is a cultural evolutionary process in which variants of
linguistic variables change in frequency through processes analogous to mutation,
selection and genetic drift. In this work, we apply a recently-introduced method to
corpus data to quantify the strength of selection in specific instances of historical
language change.Wefirst demonstrate, in the context of English irregular verbs, that
this method is more reliable and interpretable than similar methods that have
previously been applied. We further extend this study to demonstrate that a bias
towards phonological simplicity overrides that favouring grammatical simplicity
when these are in conflict. Finally, with reference to Spanish spelling reforms, we
show that the method can also detect points in time at which selection strengths
change, a feature that is generically expected for socially-motivated language
change. Together, these results indicate howhypotheses formechanisms of language
change can be tested quantitatively using historical corpus data.

Keywords: language change; evolutionary dynamics; selection; corpus analysis; verb
regularisation; spelling reforms

1 Introduction

Human languages undergo constant change as a result of innovations in form and
meaning, and competition between new and old forms of expression. For example, a
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phoneme may start being pronounced in a different way, or a new word order may
be introduced. A wide range of factors may be responsible for innovation (Walker
2010). These include expressivity, for example, a desire to be noticed, recognisable,
amusing, or charming (Keller and Nerlich 1994), and economy, minimizing the effort
needed to communicate without compromising the listener’s understanding, which
may lead to the development of novel, simpler forms (Zipf 1949). Meanwhile,
competition mediated by interactions with other components of the language may
favour a more consistent mapping between form and function. Alongside these,
social factors like prestige or taboo (Labov 2001), may make certain variant forms
more or less attractive to certain language users.

In this work, our aim is to quantify the competition between linguistic variants
that are available to a speech community, and therewith gain insights into its origins.
We achieve this by viewing language change as a cultural evolutionary process
(Atkinson and Gray 2005; Croft 2000; Mufwene 2001; Pagel 2009). When modelling
cultural evolution (Boyd and Richerson 1988; Cavalli-Sforza and Feldman 1981), it has
long been recognised that changes in variant frequencies may arise both from sys-
tematic biases (which we refer to generically as selection) and random drift. While
drift may refer to directional change in linguistics following Sapir (1921), we use it
here in the cultural evolutionary sense, denoting unbiased stochastic change. Typi-
cally one is most interested in identifying the selective forces that cause one variant
to be favoured over another, including linguistic (Labov 1994) or social (Labov 2001)
factors. Eliminating the possibility that changes may be entirely due to drift is a
necessaryfirst step in this endeavour. Initial attempts to achieve this in the context of
cultural evolution involved establishing statistical properties of drift and comparing
with the corresponding features of empirical data. For example, the distributions of
baby names (Hahn and Bentley 2003) and Hittite ceramic bowl types (Steele et al.
2010), as measured at a single point in time, were found to be consistent with the
predictions of drift. Under closer examination, however, deviations from drift were
found in both cases, for example, by appealing to the rate atwhich themost abundant
types are replaced (Acerbi and Bentley 2014).

Cultural and linguistic datasets provide a potentially rich source of data to
constrain parameters in a model of the evolutionary process. In particular, by
combining observations of token frequencies at multiple time points, one should
achieve greater inferential power than can be achieved by considering only a single
point in time. Although such analyses are challenging to construct, a number of
forward steps have been made in recent years. For example, the evolution of
pottery styles was investigated by appealing to predictions for the number of types
remaining after a given time under drift (Kandler and Shennan 2013) and by using
simulated trajectories of variant frequencies in an Approximate Bayesian
Computation scheme (Kandler and Powell 2015).
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Here, we analyse changes in linguistic corpus data with a method based on the
Wright–Fishermodel of evolution (Fisher 1930;Wright 1931). Although introduced as
a model for changes in gene frequencies through biological reproduction, the
Wright–Fisher model is also relevant to cultural evolution (Cavalli-Sforza and
Feldman 1981). In the specific context of language change, the Wright–Fisher model
has been shown to be equivalent to a variety of different conceptual approaches. For
example, a mathematical formulation of Croft’s descriptive theory of utterance
selection (Croft 2000), itself grounded in Hull’s (2010) generalised analysis of selec-
tion, was shown to have the same structure as theWright–Fishermodel (Baxter et al.
2006). Moreover, Reali and Griffiths (2010) showed that a version of the Wright–
Fisher model that includes innovation and drift is equivalent to a model of iterated
learning where language learners apply Bayesian inference to estimate a variant’s
frequency in their linguistic input. Other theories of language change, for example
those that invoke a competition between multiple candidate grammars (Yang 2002),
can also be viewed as instances of Hull’s generalised analysis of selection, and it has
been argued that these may also be represented as a Wright–Fisher model (Blythe
and Croft 2021).

The essence of the analysis presented below is to determine the values of
parameters in theWright–Fishermodel thatmaximise the probability that themodel
generates the series of variant frequencies obtained from a historical corpus. As we
set out in Section 2 below, one of these parameters quantifies the strength of selec-
tion, and the other the scale of fluctuations arising from random contributions to
language change. A difficulty with theWright–Fisher model is that themathematical
formulæthat describe the evolution are difficult to work with. In genetics, a great
deal of effort has been invested in devising reliable approximations that facilitate
application to empirical time series (Tataru et al. 2016), an effort that we utilise here
in the cultural evolutionary context. Specifically we build on a Beta-with-Spikes
approximation (Tataru et al. 2015) in a way that facilitates an efficient and reliable
estimation of model parameters, as judged by benchmarking with both real and
synthetic data (Montero and Blythe 2023).

In Section 3 we apply this method to historical corpus data in three separate
investigations. First, we revisit the set of English verbs with irregular past tense
forms that were previously examined by Newberry et al. (2017), Karjus et al. (2020),
and Karsdorp et al. (2020), showing that our method is more reliable than that based
on a normal approximation of theWright–Fisher model (Newberry et al. 2017) while
offering greater interpretability than a neural-network based time-series classifier
(Karsdorp et al. 2020). In common with Newberry et al. (2017), we find that some
verbs appear to be irregularising over time.

By itself, the inferred strength of selection is not necessarily informative as to its
underlying cause. Our second investigation demonstrates one approach by which

Selective forces in language change 3



such information can be gleaned. Specifically, we divide English verbs into two sets:
those whose regular past tense form contains a repeated consonant, and those that
do not. The former set is then subject to a conflict between the greater grammatical
simplicity that would be gained by following the regular pattern and the greater
phonological simplicity afforded by omitting the repeated consonant (Leben 1973;
Stemberger 1981). By comparing the selection strengths between the two sets, we can
show that the latter constraint tends to override the former in the context of English
verbs.

Finally, we turn to a set of Spanish words that were affected by orthographical
reforms in the 18th and 19th centuries. Here, we demonstrate that an unsupervised
maximum-likelihood analysis can pinpoint with good accuracy the time at which the
reforms were introduced and furthermore quantify the impact of the reform on the
linguistic behaviour of the speech community. These last results illustrate that, even
with time-series comprising a few measurement points, we can uncover social
changes that might not otherwise be apparent. We discuss such opportunities, along
with limitations of our method, further in Section 4.

2 Methodology

2.1 Maximum likelihood estimation methods

Maximum likelihood estimation is a conceptually simple yet powerful technique for
estimating parameter values in a model and selecting between multiple candidate
models. The basic setup is that we have both some empirical data, denoted X, and a
probabilistic model that tells us how likely the observation X is given some choice of
parameters Θ. We then estimate the values of the parameters by determining the
combination that maximises the likelihood of the data. This procedure lies at the
heart of many statistical methods, including linear regression. In such a model,
parameters are chosen to maximise the likelihood of the data given a statistical
model of the residuals (Severini 2000; Silvey 1970), for example, that the residuals are
drawn from a normal distribution. It can also be viewed as a special case of Bayesian
inference with a uniform prior.

In this work we are concerned with frequency time series, that is, a sequence of
measurements X = {(xt, t)} = {(x1, t1), (x2, t2), …, (xm, tm)} where xi is the fraction of
instances of use of a linguistic variable (e.g., all past-tense forms of a specific verb) in
which a particular variant (e.g., the regular form) was used during a short time
window centred on time ti. Thus, the dataset X = {(0.2, 1), (0.5, 2), (0.75, 5)} would imply
a proportion of usage of the regular form of 20 % at time 1, 50 % at time 2 and 75 % at
time 5 (and no frequency data at any other time).
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The underlying evolutionary model of language change determines a set of
transition probabilities, Prob(xi+1, ti+1|xi, ti,Θ), that tell us how likely it is that, given a
proportion xi at time ti and parametersΘ, the proportionwill be xi+1 at time ti+1. In the
previous example, the dataset X would determine the transition probabilities
Prob(0.5, 2|0.2, 1, Θ) and Prob(0.75, 5|0.5, 2, Θ), whose exact numerical values would
depend on the choice of model parameters Θ. We assume that contributions to
changes in variant frequencies at different points in time are uncorrelated, which
means that we can write the likelihood of the entire frequency time series as the
product of the transition probabilities for each interval:

L(X|Θ) = ∏
m−1

i=1
Prob xi+1, ti+1|xi, ti,Θ( ). (1)

It is this likelihood function thatwewill maximise to determine the set of parameters
Θ that best describes the cultural evolutionary dynamics, and that we will use to
compare different models.

There are two main ways to choose the form of the transition probabilities
Prob(⋅|⋅, Θ), a choice that is crucial to parameter estimation and subsequent inter-
pretation. One could simply assume that the frequencies follow a prescribed tra-
jectory between the two points, subject to some fluctuations around them. For
example, in linear regression, frequencies would be assumed to vary linearly with
time with normally-distributed residuals. Logistic regression is similar, but instead
assumes that frequencies vary following a nonlinear logistic function that is
commonly used as a model for S-shaped language change (Kauhanen and Walkden
2018; Kroch 1989; Reali and Griffiths 2010). A weakness of this approach is that
without an underlying model of language production and transmission that may
be operationalised as frequency time series, it is difficult to relate the parameters
obtained to the behaviour of individuals or speech communities.

The alternative is to derive the transition probabilities from an explicit agent-
based model of language change, many of which can be understood as a variant of
the Wright–Fisher model of evolution (Blythe and Croft 2021). As noted in the
introduction, the transfer of amodel from genetics is justified on theoretical grounds
(Croft 2000; Hull 2010) and one can interpret the parameters by appealing to models
of language use (Baxter et al. 2006) or iterated Bayesian learning (Reali and Griffiths
2010). A drawback of the Wright–Fisher model is that exact expressions for the
transition probabilities (Crow and Kimura 1970) are complex and difficult to work
with computationally, as their associated transition matrices may become numeri-
cally intractable (Paris et al. 2019). This has motivatedmany different approximation
schemes (Tataru et al. 2016). In this work, we apply a selfcontained Beta-with-Spikes
approximation scheme that was developed and tested by Montero and Blythe (2023)
and found to provide reliable estimates for parameter values without incurring

Selective forces in language change 5



undue computational cost. In the following we overview the conceptual components
of this approach that aremost relevant to linguistic applications, directing the reader
to Montero and Blythe (2023) for technical details.

2.2 The Wright–Fisher model

The Wright–Fisher model describes a population of N replicating individuals of
different types, each of which directly corresponds to a different variant of a lin-
guistic variable. While any number of mutually exclusive types can be included in
the model, we will focus on the case with two distinct types. Its extension to three or
more distinct types is straightforward (Tataru et al. 2016). The quantity xt is the
proportion of individuals of a specific variant in generation t, as described above.
The process of replication has the effect that, in generation t + 1, each individual is of
the variant of interest with probability g(xt, s), which depends both on the compo-
sition of the population and a measure of selection strength that we denote s. It is
assumed that each of the N individuals in the new generation has its type assigned
independently. This replication process is illustrated in Figure 1.

The two evolutionary parameters, N and s, can be afforded a linguistic inter-
pretation as follows. The effective population size, N, quantifies the scale of fluctu-
ations in the variant frequencies around a smooth trajectory of change. The smaller
the effective population size, N, the larger the fluctuations. When selection is weak
(s is close to zero), the time taken for a variant to go extinct is proportional toN (Crow
and Kimura 1970). Its interpretation as a population size, effortless in population
genetics, does not work as well when studying language change. Through agent-
basedmodels of language learning and use (Baxter et al. 2006; Blythe and Croft 2021),
we understand that N generically correlates with the size of the speech community.
However, heterogeneous social network structures can result in N correlating only
weakly with the size of the human population (Blythe and Croft 2021; Bromham et al.
2015; Wichmann et al. 2008). The population sizeN is also related to the total usage of
all variants of a linguistic variable in a given generation, and how long it is retained
in memory (Baxter et al. 2006; Reali and Griffiths 2010). Intuitively, speakers will be

Figure 1: Schematic
representation of the transition
from generation t to generation t +
1 in a Wright–Fisher process with
N = 10.
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more consistent in their usage of specific variants themore they encounter them, and
the longer they recall these encounters. This increased individual consistency will be
reflected as smaller fluctuations in time series data. Although our analysis will not
allow these different contributions to N to be distinguished, we will be able to
determine which linguemes are subject to greater or lesser uncertainty in trans-
mission between speakers.

The selection strength parameter, s, represents a tendency for the variant of
interest to increase in relative usage (s > 0) or decrease (s < 0). Here, s subsumes all
factors that could lead to a variant systematically increasing or decreasing in fre-
quency over time, whether they originate in cultural, cognitive or language internal
factors (Croft 2000; Labov 1994, 2001, 2010). Similarly to the various factors that may
influence the effective population size, we will not be able to distinguish them from
the value of s alone. However, as we show below, we can gain useful information by
looking for common features of variants which are found to have similar selection
strengths.

The parameter s specifies the probability g(x, s) that an individual in generation
t + 1 is an offspring of an individual with frequency x and selection strength s in the
previous generation. Here, we take

g(x, s) = 1
1 + 1−x

x e−s
, (2)

which has been commonly used in the theoretical characterisation of language
change (Kauhanen and Walkden 2018; Yang 2000). In Figure 2 we plot the transition
probability Prob(x|x0, s) that results from this definition for the casewhere x0 = 1

2 and
for different values of s. We see that larger values of s shift the peak of this

Figure 2: Probability distribution of a variant frequency x after one generation of evolution in the
Wright–Fisher model, starting from a frequency x0 = 1

2. As the selection strength s increases, the
distribution becomes more sharply peaked on larger values of x.
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distribution towards higher values of this frequency x, consistentwith the notion of a
bias towards the corresponding variant.

In the literature, one can find relationships between the selection strength s and
the probability g(x, s) different to that specified above (Crow andKimura 1970; Tataru
et al. 2016). Our chosen formula has the useful property that g(x, s) + g(1 − x, −s) = 1,
whichmeans that if one of two variants in a population has a selection strength s, the
other one implicitly has a selection strength −s. This choice thus lends a symmetry
between positive and negative selection strengths of the samemagnitude, which aids
the interpretation of the results. The strength s = 0 represents pure drift, where any
changes in usage over time are due to the stochasticity of replication alone, and not
the presence of selective forces. Under pure drift, g(x, s) reduces to g(x, 0) = x.

2.3 Beta-with-Spikes approximation

For a single generation of evolution in the Wright–Fisher model, the transition
probability is the binomial distribution

Prob(xt+1|xt,N , s) = N
Nxt+1

( )g xt, s( )Nxt+1 1 − g xt, s( )( )N(1−xt+1) (3)

because there are N individuals and a success probability of g(xt, s). If the effective
population size N is known, and the time between two frequency measurements
corresponds to a single generation, one can use this expression for the transition
probability in Equation (1) to construct the overall likelihood of a series of mea-
surements. In the present application to linguistic corpus data, neither of these
requirements hold. N is a parameter that we need to estimate, and measurement
times are not in general separated by a fixed interval that constitutes a single
Wright–Fisher generation. The Beta-with-Spikes approximation, introduced by
Tataru et al. (2015) and extended by Montero and Blythe (2023), is designed to deal
with these complexities.

For two observations made at times xt and xt+k (i.e., separated by k generations)
the BwS approximation is

Prob(xt+k|xt,N , s) = P0, kδ(xt+k) + P1, kδ(1 − xt+k)

+ 1 − P1, k − P0, k( ) xαk−1t+k (1 − xt+k)βk−1
B(αk , βk)

.
(4)

Here, P0,k, P1,k, αk and βk are parameters that determine the shape of the distribution.
These parameters have the following interpretation. P0,k is the probability that the
variant has gone extinct by the kth generation, and P1,k is the probability that it has
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driven the other variant to extinction in that time. αk and βk control the shape of
the distribution of variant frequencies, conditioned on neither of them having
gone extinct. These parameters can be determined from the mean and variance of
this conditional distribution (see Montero and Blythe 2023). Note that all four
parameters depend onN and s, as well as the sequence of observed frequencies xti.
Therefore, they need to be recalculated for each time series and combination of
model parameters.

A crucial advantage of the BwS approximation is that it accounts for the fact that
changes in variant frequencies cannot be arbitrarily large. If a variant has a low
frequency (x close to zero), then a downward fluctuation should cause it to become
extinct, rather than attain a negative frequency. It is the spikes (represented by the
delta functions) in the Beta-with-Spikes expression (4) that incorporate this
constraint. By contrast, a normal approximation to the same transition rates (as used
by Feder et al. 2014; Newberry et al. 2017) allows, in principle, arbitrarily large or
negative x, instead of being constrained to the range 0 ≤ x ≤ 1. This difference is
illustrated in Figure 3 which shows the statistical distances between the BwS and
normal approximation and the exact WF transition probability, for different values
of the initial frequency x0 and two values of the selection strength s. We see that for
both pure drift (s = 0) and strong selection (s = 0.5), the BwS approximation stays
consistently closer to the exact distribution for all values of x0, which is reflected in
lower values of the statistical distance. In particular, the BwS approximation is

Figure 3: Comparison of the statistical distances of the BwS and normal approximations to the exact
WF distribution as a function of the initial frequency x0. Left: statistical distance for pure drift (s = 0).
Right: statistical distance for strong selection (s = 0.5). The Beta-with-Spikes approximation has lower
statistical distance to the exact distribution (meaning it approximates it more accurately) for every value
of s and x0, but especially for extreme values of x0 close to 0.0 or 1.0 and for strong selection.
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significantly better than the normal approximation for initial frequencies x0 close to
the edges of the interval, and for strong selection.

The main task in applying the BwS approximation is to estimate the parame-
ters P0,k, P1,k, αk and βk for successive generations k = 1, 2, 3, …. The strategy of
Tataru et al. (2015) is to match up the moments of the BwS distribution to those of
theWright–Fishermodel after k generations have elapsed. This methodworks well
when the selection strength s small, but less so when it is large. Montero and Blythe
(2023) have improved on themethod, particularly in the large s regime, by iterating
(3) one generation at a time, and reading off the extinction probabilities, mean and
variance at each. The code that implements this procedure, and generates
parameter estimates is available here.

In the context of cultural evolution, it is not obvious what period of time counts
as a generation in the Wright–Fisher model. In principle, this is a free parameter
which would also need to be optimised by maximum likelihood estimation (and
furthermore demand an interpretation). Fortunately, this is unnecessary. Montero
and Blythe (2023) further show that the optimum values of 1/N and s are both
proportional to the chosen generation time. In other words, the generation time
serves only to set the units in which the parameters N and s are measured. It is
however important to use the same generation time acrossmultiple time serieswhen
onewishes to compare the values ofN and s that are obtained: otherwise, theywould
be in different units and not comparable. In this work we generally take the shortest
time between successive observation points as the generation time. If one makes it
shorter than this, the computational effort increases without any improvement in
the quality of the estimates obtained. If onemakes it longer, onemust then aggregate
multiple data points which then entails a loss of temporal resolution. However, as we
discuss below, it is sometimes beneficial to combine data points to reduce sampling
error that is not accounted for in the present maximum likelihood analysis.

2.4 Distinguishing selection from drift

As established in the introduction, the social, linguistic and cognitive forces driving
language change are very diverse. Still, their measurable effects can be broadly
characterised as belonging to one of two types. Systematic biases drive the
evolutionary process in a specific direction, and can bemodelled as selective forces.
Frequency effects and stochasticity in transmission produce random, unbiased
drift whose effects are always present, albeit not always sufficient to explain the
behaviour of the data. Quantitative, empirical analyses benefit from the simple yet
powerful and flexible characterisation of language change afforded by this binary
description.
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By using the transition probabilities (4) in the likelihood function (1), we can find
the maximum likelihood values of the effective population size N* and selection
strength s* via

(N*, s*) = argmax L(X|N , s). (5)

In practice, we find that the likelihood function L(X|N, s) has a single maximum,
which can be located by successively optimising on N at fixed s and vice versa.

It is important to establish whether the selection strength s* is significantly
different to zero: otherwise, the null model of stochastic drift (s = 0) would be
sufficient to explain the behaviour of the data without the need for selection (Blythe
2012; Newberry et al. 2017). In order to do this, we compare the maximal likelihood
under selection, L(X|N*, s*), with themaximal likelihood under pure drift. That is, we
first restrict to s = 0 and determine the optimal effective population size N*

0:

N*
0 = argmax L(X|N , 0). (6)

Then we compare the models with and without selection by computing the likeli-
hood-ratio

λ = 2 ln
L(X|N*, s*)
L X|N*

0, 0( )( ). (7)

This quantity can be compared to a reference distribution to find a p-value, an
estimation of the probability that the observed time series could have arisen from
drift alone1 (Severini 2000; Silvey 1970). To achieve this, we follow the procedure
outlined by Feder et al. (2014) and generate 1,000 artificial time series spanning the
same time period as the empirical dataXwith parameter values s = 0 andN = N*

0. For
each of these we compute the maximum likelihood values N*, s* and N*

0, using the
same sequence of steps as for the original empirical time series.We then compute the
likelihood ratio λ and determinewhat fraction of the artificial time series has a larger
λ than the one that was observed. This provides an empirical p-value for the null
hypothesis of drift.

3 Results

We now apply the methods set out above in three separate tasks, each with a distinct
purpose. First, we revisit the set of verb time series from the Corpus of Historical

1 The commonly used χ2 distribution does not work well for p-value estimation when working with
data from historical corpora, as it only converges to the true distribution of likelihood-ratios for time
series of infinite length (Feder et al. 2014).
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American English (COHA, Davies 2010) to benchmark our approach against those of
Newberry et al. (2017) and Karsdorp et al. (2020). These results demonstrate that the
BwS method is both more robust than a similar likelihood-based approach (New-
berry et al. 2017) and more informative than a neural network trained to perform a
binary classification (Karsdorp et al. 2020). We also introduce a method for assessing
the variability of parameter values under different binning strategies, thereby
facilitating a judgement as to which results are more robust.

We then perform similar analyses to understand the direction of selection in the
context of English irregular verbs, this time using the English 2019 1- and 2-g datasets
from the Google Books corpus (Michel et al. 2011). This larger corpus contains more
instances of verbs that appear to be irregularising over time. We find that a
phonological constraint that disfavours repeated consonants can override a general
preference for regularity. Finally, we use data from the 2019 Spanish 1-g Google Books
corpus to show that the dates at which Spanish spelling reformswere introduced can
be detected using the unsupervised maximum-likelihood analysis.

The validity of using frequency data from the Google Books corpus to draw
conclusions on cultural evolution and language change has been questioned by
Pechenick et al. (2015) due to the over-representation of scientific literature in the
English sub-corpus throughout the 20th and 21st centuries. While they propose
restricting studies of cultural and language change to the fiction sub-corpus, we
believe that using frequency data from the general English sub-corpus is justified for
the purposes of our study. First, our work rests on the comparison between two data
sets of English verbs differing only in their phonology. It is reasonable to assume that,
if any bias exists in scientific texts regarding the use of irregular or regular forms of
verbs, this bias will not be phonologically conditioned, thus maintaining the validity
of the comparison between both data sets. Secondly, we have chosen verbs that are
reasonably present in both the general English corpus and the English Fiction corpus,
so potential biases towards uncommon verbs in scientific literature should not be an
issue. Thirdly, the general English sub-corpus will contain more words than the
restricted fiction sub-corpus, thus reducing the effect of sampling noise on our
results.

3.1 Drift versus selection in past-tense English verbs

A simple example of competition between two variants is provided by English verbs
with an irregular past tense form which in many cases coexists with a regular form.
This competition has been studied from a variety of quantitative perspectives
(Cuskley et al. 2014; Karjus et al. 2020; Karsdorp et al. 2020; Lieberman et al. 2007;
Newberry et al. 2017; Ringe and Yang 2022). Of greatest relevance to the present work
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are those studies that aimed to distinguish drift from selection as the mechanism
behind changes in the relative frequencies of the regular and irregular forms over
time.

Newberry et al. (2017) applied the Frequency Increment Test (FIT, Feder et al.
2014) to a set of verbs from the Corpus of Historical American English (COHA, Davies
2010). This is a maximum-likelihoodmethod that rests on a normal approximation to
the Wright–Fisher transition probabilities. Like the Beta-with-Spikes maximum-
likelihood method in Section 2.4, this method yields estimates of the effective pop-
ulation size and selection strength, along with a p-value for the null hypothesis of
pure drift. However, there are situations where results are flagged as unreliable due
to the frequency increments failing a normality test (Newberry et al. 2017). Karjus
et al. (2020) further noted that the results can also be sensitive to the size of the
window over which frequencies are estimated.

Karsdorp et al. (2020) avoid these issues by taking the rather different
approach of training a neural network on simulated time series generated by the
Wright–Fisher transition probabilities (3) for different values of s (but fixed N = 1,
000). Each time series in the training set is labelled according to whether it was
generated purely by drift (s = 0) or if selection was operating (s ≠ 0). Once trained,
the network yields a binary classification of empirical time series, according to
whether they are more similar to the examples of drift or selection in the training
data. We refer to this as the Time Series Classification (TSC) approach. The
advantage of TSC is that no approximation to the Wright–Fisher transition prob-
abilities is made. Moreover, one canmanipulate the training data so that it displays
artifacts of binning or finite sample sizes that are features of real time series, which
in turn should improve the reliability of the classification. This approach does
however come with some drawbacks. Whilst the output from the classification
algorithm is a value between 0 and 1, it does not have an obvious interpretation as a
probability. Karsdorp et al. (2020) used a threshold of 0.5 to label timeseries as
arising from drift or selection. The method further does not provide an estimate of
the strength of s, and since N was fixed in the training set, this amounts to an
assumption that this single value ofNwas appropriate for all empirical time series.
This could be an issue since Newberry et al. (2017) report awide range of values ofN
for this data set (from around 80 to around 22,500).

In SectionA of Appendixwe report themaximum likelihood estimates ofN and s,
along with the p-value for the drift hypothesis, obtained using the BwS method for
the same set of verbs that were considered by Newberry et al. (2017) and Karjus et al.
(2020) using FIT and by Karsdorp et al. (2020) using TSC. We perform the analysis by
extracting annual frequency data of the variants of interest from COHA and aggre-
gating it into 10-, 20- and 40-year bins. The reason for this is a trade-off between the
more precise frequency estimates that derive from larger bins and the greater
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temporal resolution obtained from a larger number of bins over the relevant his-
torical period. By employing different binning strategies, we can gain insights into
the consequences of this trade-off. Variable-width binning strategies have also been
successfully applied in previous studies (Newberry et al. 2017). In these, the number
of tokens per bin is kept roughly constant at an arbitrarily chosen value, at the
expense of varying their temporal width. For the purpose of comparing the different
methods, we have chosen to look only at fixed-binning strategies, although the BwS
method could be combined with variable-width binning.

We focus first on the role played by selective forces, which we quantify by
appealing to the p values associated with the null hypothesis of pure drift as
described in Section 2.4. In Figure 4 we compare the results obtained from the three
different methods by ordering the verbs from left to right by decreasing BwS
p-value, averaged over the three temporal binnings. Each panel corresponds to a
different analysis method, and indicates the p-value for the hypothesis of pure drift
for each verb and binning protocol.We recall that higher p-values aremore suggestive
of the historical changes being due to drift: these are representedwith colours ranging
from light to dark blue, with darker colours representing higher p-values. Meanwhile,
low p-values point towards other forces (such as selection) being present and are
representedwith different shades of red.While we use the standard p-value threshold

Figure 4: Results for the detection of selective forces in 36 COHA verbs, with three different methods
and for three different temporal binnings of 10, 20 and 40 years. Results for both the FIT and BwS
likelihood-ratio algorithms produce a p-value for the pure drift hypothesis. Blue shades represent
higher p-values (i.e., higher likelihood of the data under drift), while red shades represent p-values
under the traditional 0.05 threshold of significance for selection. Time series where the normal
approximation that FIT relies on is inaccurate are crossed out. Results for the TSCmethod fromKarsdorp
et al. (2020) are classified in a binaryway as either drift or selection. The average p-value across the three
bins widths obtained through the BwS algorithm is shown along the horizontal axis. We note that the
BwS method gives results consistent with TSC when FIT is unreliable.
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of 0.05 in the transition between blue (drift) and red (selection) in this representation,
we acknowledge that these mechanisms lie in a continuum by making the transition
between these extremes smooth.

We see from Figure 4 that the three distinct methods give broadly consistent
results, with those verbs towards the left being more compatible with change
through pure drift, and those to the right with change from selection. More precisely,
the correlation coefficients between the p-values obtained with different methods
are 0.63 (Pearson) between FIT and BwS, 0.68 (biserial) between TSC and FIT, and 0.62
(biserial) between BwS and TSC. Analyses producing high p-values for selection
(i.e. implying that drift alone can explain the behaviour of the data) are indicated
with blue colours, whereas those where selection is more significant are red. Results
obtained through the FIT method are generally consistent with those obtained with
the BwS method. However, 30 of the FIT results (27.8 % of the total) are flagged as
‘unreliable’ due to a failed normality test. These reliability issues are designed out of
the BwS method, as it does not require normally-distributed increments (Montero
and Blythe 2023; Tataru et al. 2016). Confidence in the method’s reliability is also
gained by benchmarking with synthetic and genetic data (Montero and Blythe 2023)
and through the consistency with the independent TSC results. The higher precision
of the BwS at high selection strengths leads to higher significance (lower p-values) in
its detection of selective forces when compared to the normal approximation,
leading to redder colours in Figure 3.

The TSC appears to give a cleaner classification of verbs according to drift and
selection, and greater consistency with different choices of bin size. This is likely due
in part to the training data being subjected to the same binning protocol as the
empirical time-series, but also because a strict threshold was applied to the neural
network’s output value to partition into the two classes. While the TSC neural net-
works produce a value between 0 and 1 as their output, making itmore nuanced than
this binary classification would suggest, this number is not a probability or a p-value
like those produced by BwS or FIT. Thus, an arbitrary threshold is necessary in order
to classify time series as driven by drift or selection. A higher or lower threshold
would put the boundary between the two classes in a different place. This hinders the
interpretability of the result and the estimation of significance levels.

Our results further demonstrate that variation in p-values under different
binning strategies, previously observed within the FIT analysis (Karjus et al. 2020),
remains evident under the less restrictive BwS analysis presented here. We conse-
quently regard this variability as an inherent feature of the time series data: that is,
some changes are harder to classify than others. That is, this uncertainty need not be
a failure of the method, but a reflection of linguistic reality. For example, it could
reflect different variants being used less predictably by speakers, or by the con-
straints on variation changing over short timescales (Tagliamonte 2011).
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Such observations motivate a more detailed investigation of the classifiability of
individual time series. A time series that shows limited variation in parameter values
under different temporal binnings is more classifiable than one that shows more
variation. With our interest in selection, the two most relevant parameters are s, the
selection strength, and the p-value associated with the drift hypothesis. We can
visualise the variation in these parameters by performing a Principal Components
Analysis (Jolliffe 2002) on combinations obtained through different binning strate-
gies (in this case, bins of 10, 20 and 40 years). The interior of the resulting ellipses
indicates the range of variation of the two parameters over different binning stra-
tegies. This way, they provide a visualization of not just the average, but the
uncertainty and covariance of s and the p-value under different binning strategies.
We show these ellipses for the COHA verbs in Figure 5. The upper panel contains the
full range of p and s values obtained through the analysis, while the lower panel
zooms in on the region where the drift p-value is smaller than 0.05 (i.e., the con-
ventional threshold for rejecting the null hypothesis). We see a correlation between
the maximum likelihood value of s and the p-value (both through the positions and
rotation angles of each ellipse).

The ellipses that lie entirely within the lower panel correspond to the verbs that
aremost likely to be driven by selection.We see a clear split between four verbs with
positive selection (catch, light, wake and quit), which corresponds to them becoming
more irregular over time, and six verbs (learn, lean, burn, smell, dwell and spill) with
negative selection, and thus regularising over time. In this analysis, the frequency x is
the fraction of irregular forms used in the relevant context. Across the entire plane,
there is evidence of both regularisation and irregularisation, although in most cases
it is difficult to rule out drift as an explanation for the changes, as was observed by
Newberry et al. (2017).

In interpreting these results, it is important to recognise that the presence
of fluctuations around a smooth change trajectory will tend towards a higher drift
p-value, since in the analysis drift is the sole source offluctuations. It is possible that
fluctuations in the corpus derive from other sources, such as sampling effects
associated with a finite corpus. Some methods for estimating parameters in the
Wright–Fisher model attempt to account for such fluctuations separately to drift
(Tataru et al. 2016). These are, however, typically difficult to implement, and instead
we sidestep the issue by ensuring sufficiently many tokens in each temporal bin
that the frequency is well estimated. As such, we might expect to see stronger
evidence for selection as the bin width is increased, which appears to be true for
some (but not all) of the verbs with intermediate p-values. This suggests that some
language changes may be dominated by the random effects of drift and therefore
exhibit strong fluctuations even in very large corpora.
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To summarise, we have shown in this section that the BwSmethod can be readily
applied to historical corpus data for changes in the frequencies of linguistic variants.
It provides estimates of parameters in theWright–Fishermodel that do not rest on an
assumption that frequency increments are drawn from a normal distribution, and
we find broad consistency in the strength of support for a drift hypothesis with
complementary methods.

Figure 5: Variability in the selection strengths s and p-values for the null hypothesis pure drift for the
COHA verbs. Each cross shows the mean value of the two parameters for each verb obtained when
aggregating frequencies into temporal bins of different lengths. Each ellipse indicates the variability in
the parameters at the level of one standard deviation. The vertical axis is an indicator of selection,
defined as one minus the p-value associated with the drift hypothesis. The lower panel shows those
verbs that fall within the range of p-values that is conventionally used to reject the null hypothesis for a
single observation. In this panel we see a clear split into those that are regularising (negative s) and are
irregularising (positive s).
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3.2 Competing linguistic motivations in English verbs

In the previous section we observed a split between some verbs that were regular-
ising and some that were irregularising. While the extension of regular inflection at
the expense of irregulars seems to be the norm (e.g. Bybee 1995; Sims-Williams 2016),
irregularisation is however an attested phenomenon. Cuskley et al. (2014) found that
the processes of regularisation and irregularisation tend to take place with similar
frequency, something that is also perhaps suggested by Figure 5, which shows a
similar density of verbs along the branch with positive s (towards irregularity) and
negative s (towards regularity). Ringe and Yang (2022) suggest that irregularisation
may occur if the number of verbs within an irregularity class is high enough to
surpass a productivity threshold. Following Bybee (2001) and Prasada and Pinker
(1993), both Cuskley et al. (2014) and Newberry et al. (2017) propose phonological
analogy as a potential mechanism for irregularisation. Couched in the terms of the
present work, this would correspond to the general rule (adding -ed) contributing a
negative value to swhilst rules that apply only to a specific subset of verbs contribute
a positive value to s. Note that we do not necessarily imply that these contributions
are additive: for example, in optimality theory (Hayes 1999; Prince and Smolensky
1997), higher-ranked rules take precedence over lower-ranked rules. In general,
we may regard opposing forces on linguistic variation as arising from competing
motivationswhich have been discussed in a variety of language change contexts (e.g.,
Bates and MacWhinney 1987, 1989; DuBois 1985; Haiman 1983; Hawkins 2004; Kirby
1997). By whatever mechanism this opposition is resolved, an overall positive s value
here indicates that the irregularising rule is dominant.

In this section, we investigate a distinct motivation that may favour irregu-
larisation, namely the phonological simplicity that is afforded by omitting a sound
repetition that would occur under application of the regular rule. Specifically, we
consider verbs whose infinitives end in alveolar stops (/d/ or /t/) and have an irreg-
ular past formwhere the regular -ed termination is omitted. Examples include I bled
instead of I bleeded or she bet instead of she betted. Verbs where devoicing of final /d/
or changes in the root vowel take place on top of the omission of the termination are
also considered. Thus, we hypothesise that the regular form is preferred from the
point of view of inflectional simplicity (i.e. using the regular everywhere leads to a
simpler inflectional system), while the irregular form is favoured by phonological
simplicity. By applying the BwS algorithm to estimate the s parameter (and in
particular, its sign), we can assess how these competing motivations play out.

For this investigation we switch to the 2019 English Google Books corpus (Michel
et al. 2011), as the number of verbs falling into this category and whose past tense
forms are both sufficiently frequent and can be reliably identified is relatively small.
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The larger size of Google Books relative to COHA allows more examples to be
included. We identified 19 English verbs whose irregular and regular forms both
show usage above 1 % at least in one 5-year bin in the Google Books corpus in the
considered time frame (1809–2009). These verbs are: bend, bet, bite, blend, build, fit,
glide, knit, light, pat, plead, quit, slide, speed, spit, thrust, tread, wed, and wet. A
difficulty in the analysis is that the irregular past-tense form can coincide with
certain present-tense forms. A major exception is when the verb is preceded by a
third-person singular pronoun (e.g., the present he bets vs. the irregular past she bet),
which can easily be distinguished in the bigram dataset. We recognise that this
separation is not perfect: for example, certain English varieties do not use the third
personmarker -s, but we consider the effect of these contributions to be negligible in
the corpus.We also kept only those cases where the pronounwas judged to appear at
the start of a sentence (by virtue of capitalisation), so as to exclude contexts where
the pronoun is followed by the infinitive in a question or an inversion. Again there
are situations where capitalised pronouns can appear mid-sentence, but these are
also rare. With this, total counts of usage for verbs with non distinct irregular past
tense forms range roughly between 2,600 (knit) and 120,000 (pat), while counts for
verbs whose irregular past tense is distinct from their base form range between
600,000 (glide) and 40,000,000 (build).

In order to formally test whether a potential bias towards irregularisation is
significant, a similar analysis was carried out on a baseline set of 34 English verbs
whose base form does not end in /d/ or /t/. Data was extracted from Google Books
and all verbs satisfy the same conditions on minimal usage in the time frame of
interest (1809–2009). The chosen verbs are: awake, blow, burn, catch, cleave, creep,
dive, dream, dwell, freeze, grow, hang, heave, hew, kneel, lean, leap, learn, shake,
shear, shine, slay, slink, smell, sneak, spell, spill, spoil, strew, string, strive, swell,
wake and weave. Total usage for these verbs in the Google Books corpus for the
specified period ranges between 211,000 tokens (slink) and 31,900,000 (learn), in the
same orders of magnitude as the /d/,/t/ set.

The maximum likelihood parameters for these 53 verbs are given in Section B of
Appendix. Here,we visualise ourfindings by plotting ellipses in the plane spanned by
the selection strength and the indicator of selection, following the same procedure as
previously described for the COHA verbs, albeit with the addition of a 5-year tem-
poral binning strategy. With this, each ellipse in the s-p plane for each verb is
produced by averaging the results of the analyses of at most four temporal binnings.
We recall that these ellipses characterise the variability in these parameters as the
temporal binning is varied. The upper panel in Figure 6 shows the results for all 53
verbs.

For the purpose of comparing the two sets of verbs, we partition the s-p plane
into four regions: those with positive or negative selection strengths; and those
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where the p-value falls above or below 0.05. The lower panel of Figure 6 zooms in on
this latter region, which we may regard as showing evidence of selection. In both
panels, red crosses and ellipses correspond to verbs ending in alveolar stops, while
blue crosses and ellipses correspond to verbs in the baseline set. Given our interest in
irregularisation, three groups of verbs can be identified. Sixteen verbs (awake, bend,
bet, bite, catch, fit, hang, light, quit, shake, slide, sneak, spit, strew, wake, wed) have
their confidence regions (ellipses) completely contained in the region of likely
selection of the irregular form (p < 0.05 and s > 0, lower-right panel). Of those, 9 are
in the alveolar stop set and 7 are in the baseline set. Six verbs (freeze, kneel, leap,

Figure 6: Parameter estimates for verbs ending in alveolar stops (red) and verbs in the baseline set
(blue) in the Google Books data set. The top panel shows the entire range of drift p-values and includes
all 53 verbs. The bottom panel is restricted to p < 0.05, thus focusing on verbs that are likely to be
undergoing directed selection. The distribution of verbs in the alveolar stop set seems to be skewed to
the region where s > 0 and p < 0.05, suggesting they are more likely to be irregularising than the other
verbs.
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plead, swell, thrust) have confidence regions only partially contained in this region
of the s-p plane, indicating that, while selective forces towards the irregular form
are a plausible explanation to their dynamics, the pure drift hypothesis cannot be
confidently ruled out. The remaining 31 verbs (8 in the alveolar stop set, 23 in the
baseline set) have confidence regions contained entirely outside this region of
likely irregularisation.

These results suggest that verbs in the alveolar stop set are more likely to be
selected towards their phonologically simpler irregular form than their counter-
parts in the baseline set. To test the significance of these findings, we construct the
2 × 3 contingency table shown in Table 1, where one dimension expresses belonging
to the alveolar stop or the baseline sets, while the other dimension expresses
whether the verbs’ ellipse falls in the irregularisation region in the bottom panels
of Figure 6. The p-value for the null hypothesis that the baseline and alveolar stop
verbs are drawn from the same distribution is 0.031, as obtained by applying the
G-test of goodness-of-fit to the contingency table (McDonald 2014). This indicates
that the specific rule favouring phonological simplicity likely outcompetes a gen-
eral tendency towards regularity.

It is possible that other effectsmay be responsible for this subset of verbs tending
to irregularise. For example, it is well understood that higher frequency items tend to
tolerate greater irregularity (Bybee 2007). Given the selection criteria imposed to
arrive at the set of 12 verbs in this analysis, it is possible that the sample is skewed
towards higher frequency and more irregular forms. However, as noted, the total
token counts for both the baseline set and the alveolar stop set span similar ranges,
and also have similar averages (of around 5 million for both sets). Therefore we
consider this alternative explanation unlikely.

This is not the only phonological conditioning on irregularisation that can be
inferred from Figure 6. The subset of verbs ending in a short vowel plus a lateral
(dwell, smell, spell, spill, swell) seem to be a lot more likely to regularise under
selection than other verbs in the study. A similar G-test to the one performed on the
alveolar stop test on Table 1 reveals that this tendency is significant with p < 0.003.
The origin of this tendency is, however, unclear.

Table : Contingency table for the comparison of irregularising behaviour between the set of verbs
ending in alveolar stops and the baseline set. Irregularisation is significantly more common amongst
verbs ending in alveolar stops, with a p-value of . as provided by the G-test.

Irregularising Inconclusive Non-irregularising

Alveolar stop set   

Baseline set   
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To summarise, in this section we have shown that by focussing on a subset of
verbs that are subject to specific combination of competing motivations, the
Wright–Fisher model combined with the BwS approximation can be used to
determine the net effect of this competition. Specifically, we have acquired evidence
that phonological simplicity dominates inflectional simplicity in this competition,
suggesting perhaps that this is an instance of an OCP constraint (Obligatory Contour
Principle, Leben 1973; Stemberger 1981). OCP constraints disfavour pairs of identical
or near-identical consonants from being in close proximity to each other. In
particular, the constraint here appears to be an OCP-place constraint (Frisch et al.
2004; McCarthy 1986; Pozdniakov and Segerer 2007), meaning that it does not just
affect identical consonants, but all alveolar stops independently of voicing.

3.3 Spanish spelling reforms

So far we have assumed that the evolutionary parameters (the effective population
size N and the selection strength s) have been constant over time. In the case of
competition between regular and irregular verbs this is a reasonable assumption,
due to the factors favouring one over the other likely being cognitive or linguistic
in origin. By contrast, social pressures like prestige, taboo, or language contact
(Hernández-Campoy and Conde-Silvestre 2012; Labov 2001; McMahon 1994) are
inherently time-dependent, andwemay expect the selection strength in particular to
change over time. Here, we investigate this possibility in the context of a purposeful
change made by a regulating institution through prescriptive grammar and spelling
rules (Anderwald 2012; Rubin et al. 2013), the acceptance or rejection of which we
expect to be reflected by a change in the value of s. While well established algorithms
like change-point analysis (Taylor 2000) exist for the detection of change in time
series, these suffer from shortcomings that make them inadequate for a more
nuanced analysis of change in language and culture. First, change-point analysis is
based on the assumption that the data is distributed around a constant average
before and after a change, which changes the value of said average instantaneously.
This makes this methodology only fit for the detection of rapidly occurring S-shaped
curves of language change, where the usage frequency of a variant quickly changes
and stabilises. Secondly, change-point analysis provides no extra linguistic infor-
mation, as it does not assume a model of the underlying evolutionary dynamics.
Montero and Blythe (2023) solve this issue by setting out a procedure for estimating
times at which the parameters N and s change, thus measuring changes in the
evolutionary dynamics of the data rather than its average. We briefly recapitulate
and then apply this method below.
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The specific changes of interest are spelling reforms in Spanish that were
introduced by the Real Academia Española (RAE), the central regulatory institution
of the standard Spanish language. Since its creation in 1713, the RAE has regulated
Spanish orthography following the phonemic principle over etymological or con-
servative approaches (Baddeley and Voeste 2012). We study words affected by one of
the following reforms: (A) The simplification of the <ss> digraph to a single <s> in
1763, due to the different sounds that both spellings represented having merged in
the 16th century (Real Academia Española 1763); (B) The replacement in 1815 of
etymological <x> with <j> in all non word-final contexts where it represented the
phoneme /x/ (Real Academia Española 1815); (C) The replacement, also in 1815, of <y>
with <i> in all non word-final closing diphthongs; (D) The reversal of accentuation
rules for words ending in <n>, introduced in 1881. This reform stipulated that words
ending in <n> with a tonic last syllable had to be accentuated, while words ending in
<n> with a tonic penultimate syllable lost their previously prescribed accent (Real
Academia Española 1881). We treat words that gain an accent and words that lose an
accent as independent sets (D.1 and D.2, respectively).

We now seek to estimate the time at which each reform occurred by appealing
only to the time series data and no external information. The basic idea (see also
Montero and Blythe 2023) is to allow different parameter combinations (N, s) to apply
before and after a time T. That is, for t < T theWright–Fisher model with parameters
(N1, s1) applies, and for t > T the parameters (N2, s2) apply. The data likelihood,
obtained by combining Eqs. (1) and (4), is then maximised with respect to all five
parameters (i.e., N and s each before and after the change, and the time T of the
change itself).

After identifying the time T that maximises the data likelihood, one needs to
determine if the additional complexity of the five-parameter model is compensated
by a sufficiently improved description of the data. To achieve this, we obtain an
empirical p-value for the null hypothesis that the selection strength s was constant
over the entire time period by following a procedure similar to that described in
Section 2.4. Specifically, we determine the maximum likelihood values of N and s
without a change point, and generate 500 synthetic time series that match the length
of the observed series with these parameter values. For each of these time series, we
then optimise the five-parameter likelihood that applies when the selection strength
changes at a single point in time. An empirical p-value is then given by the fraction of
such time series whose five-parameter likelihood exceeds that of the real trajectory.
Although computational constraints limit the number of synthetic time series that
can be analysed this way, we find that situations where the five-parameter fit has a
high likelihood are extremely rare, and there is little to be gained by estimating their
rarity to greater precision. One can then apply a threshold, e.g., p < 0.05, to decide
whether to accept themore complexmodel. Having split the time series once, one can
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apply the method again to each sub-series, thereby identifying secondary change
points. This procedure terminates when none of the sub-series admits a subdivision
that yields a sufficiently improved description of the data according to the threshold
that has been imposed.

To apply this method to the Spanish Spelling reforms, we identify a set of
commonly used words that are affected by each one, and average the relative fre-
quencies of usage of their old spellings over all members of each set. The number of
words in each set ranges from 16 to 27. The exact sets are specified in Section C of
Appendix. This procedure generates a single effective time series for each of the
reforms, and has been found effective in related corpus analyses (Amato et al. 2018).

While this averaging over sets of words decreases the sampling noise in the
data and increases the inferential power of the analysis, cultural data still suffers
from issues that may affect the applicability of the method. Particularly, corpora
tend to contain lower token counts in earlier time periods. When translated to
frequency time series, this leads to greater sampling noise fluctuations that may be
misidentified as changes in the effective population size parameter N. This issue
can be remedied by applying a sampling error equalisation algorithm, as laid out by
Montero and Blythe (2023). This method creates subsamples of the larger token
counts in the data set, in such a way that sampling effects are of equal magnitude
throughout the data. In this way, any significant changes in N detected by the
method must be due to changes in effective population size parameter, and not a
consequence of unequal sampling noise.

Our results are shown in Figure 7. Despite the aggregation of words within each
category (to improve the inferential power) and 5-year bins (to reduce computational
effort), we find that the resulting trajectories are still subject to considerable fluc-
tuations. The frequency plotted is that of the deprecated variant, which we find is
eliminated in all five cases—this highlights the acceptance and influence of the Real
Academia Española amongst the literate population.We showwith a red line and dot
the time at which the reform was introduced, and with a black dot and solid line
the first time T at which subdividing the time-series improves the fit to the data, with
a p-value threshold of p = 0.05 applied.

In all five cases, we find evidence that the selection s changed significantly over
time. In each case, the first detected change point falls within twelve years of the
reform being introduced, even when the trajectory is strongly fluctuating. We note
that the algorithm does have a tendency to detect the reform after it has occurred,
rather than at its inception. This is due to the algorithm not distinguishing past from
present, making both the beginning and the end of the sharp decline following a
reform are considered equivalent.

Further iterating the algorithm, we can further subdivide the time series, as
described above. In doing so, we detect secondary time divisions (dashed lines in
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Figure 7), whose p-values are below 0.05. In time series (B), the earlier secondary
point detects the beginning of the rapid decline in usage that was deemed less
significant than the end by the first application of the algorithm. The later secondary
point in (B) and the secondary point in (A) are not associated to documented reforms,
and may reflect slight changes in social attitudes or simply be quirks of the data.

Table 2 further records the s-values before and after themain change point. All s,
N and p-values for every main and secondary point detected by the algorithm can be
found in Section D of Appendix. For categories (A), (D.1) and (D.2), we find that the s
value decreases after the detected year of the reform, corresponding to an accep-
tance of the reform by the speech community. The other two categories however
show the opposite trend, with the s value becoming less negative across the reform.
We note from Figure 7 that both categories (B) and (C) feature a rapid elimination of
the deprecated form, and that this change was in progress before the reform was

Figure 7: Application of the BwS algorithm for the detection of changing forces to the reference data
set of Spanish spelling reforms in the 2019 Spanish 1-g Google Books corpus, with temporal binning of
the frequency data of 5 years. For each set of words that undergo a rule change, the ratio of usage of the
old form is plotted over time. The ratio of usage of all old forms converges to zero after each reform. Red
dots with solid vertical lines represent the year of publication of the RAE spelling reforms (Real Academia
Española 1763, 1815, 1881). Dark blue dots with solid vertical lines represent the year at which selection
strengths changed as detected by themaximum likelihoodmethod with a p-value below 0.05. These fall
within a period ΔT of 12 years or less relative to the date of the reform. Note that the temporal resolution
of the time series is of 5 years, so an error of 10 years is equivalent to just two data points. Dashed vertical
lines represent secondary points of change in evolutionary parameters, also detected with a p-value
below 0.05. The number of such secondary points depends on the time series.
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introduced. It has been suggested that in many cases, language reforms tend to
reflect pre-existing trends, as opposed to actuating the change (Rutten and Vosters
2021). Our analysis provides further evidence of this, and further suggests that the
impact of the reform on the speech community may be limited in such cases.

In summary, this analysis indicates that the BwS method can be used success-
fully to characterise evolutionary forces that change over time from time series data
alone. As an unsupervised method, it does not rely on any prior knowledge as to
when the change may have occurred, although it does benefit from a large sample
size being available, obtained here by aggregating multiple instances of a change
together. We have found that the estimated time at which the selection strength
changed corresponds well with the time at which the corresponding reform was
introduced, and comparing these strengths before and after the reform allows us to
assess its impact on the speech community.

4 Discussion

In this work we have applied an algorithm for the quantitative study of evolutionary
time series (Montero and Blythe 2023) to instances of competition in language
change. This algorithm is based on likelihood-maximisation methods and the Beta-
with-Spikes (BwS) approximation to the Wright–Fisher model. The applicability of
the Wright–Fisher model was justified through both theoretical considerations
(Croft 2000; Hull 2010) and its manifestation as an agent-based model of language
change from various starting points (Baxter et al. 2006; Blythe and Croft 2021; Reali
and Griffiths 2010).

In Section 2.3, we demonstrated that the BwS method better captured the sta-
tistical properties of the Wright–Fisher model than the normal approximation that
has been used elsewhere (Newberry et al. 2017). In particular, it deals better with

Table : Maximum likelihood estimates of the first detected time at which the selection strength
changed, and its values before and after the change, for the five Spanish reform categories. All changes
significant with p < ..

Reform Detected year s before division s after division

(A) <ss>to <s>  −. −.
(B) <x>to <j>  −. −.
(C) <y>to <i>  −. −.
(D) Accentuation  −. −.
(D) Loss of accent  . −.
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situationswhere variant frequencies are close to 0 or 1, which arises in the casewhen
selection serves to eliminate linguistic variation across the speech community.
Through refinements to the original BwS method of Tataru et al. (2015) that are
detailed by Montero and Blythe (2023), we further gain accuracy in regimes where
the selection strength is large.

Our first application was to the set of 36 COHA verbs previously investigated by
other methods (Karjus et al. 2020; Karsdorp et al. 2020; Newberry et al. 2017). In
particular, we found that even when the Frequency Increment Test (FIT, Newberry
et al. 2017; Karjus et al. 2020) delivered unreliable results due to shortcomings of the
normal approximation that it relies on, we obtained evidence of selection that was
broadly consistent with that obtained within a Time Series Classification (TSC,
Karsdorp et al. 2020) which took the complementary approach of training neural
networks with artificial time series. The present method further delivered graded
measure of the extent towhich the historical changes are consistent with drift (in the
form of a null hypothesis p-value) along with maximum likelihood estimates of
parameters in the Wright–Fisher model.

A degree of care is needed when interpreting this p-value. All evolutionary
trajectories are likely to be the product of some combination of drift and selection.
The key question is whether their respective contributions can be distinguished.
For example, a variant could be strongly selected for (large s) but subject to suffi-
ciently large fluctuations (small N) that the systematic effects of selection are
masked. The p-value is therefore a measure of the extent to which fluctuations
alone could account for the changes that have been observed. If one chooses to
apply the conventional significance threshold for rejecting this null hypothesis
(p < 0.05), we find consistency with Newberry et al.’s (2017) observation that the
evolution of many verbs appears to be dominated by drift.

A second important question is whether these fluctuations are a consequence of
thefinite number of tokens available for analysis in historical corpora, or an intrinsic
property of the language dynamicswithin the speech community. Oneway to gain an
insights into this question is to compare results obtained with different temporal
binnings (Figures 4 and 5), since wider bins contain more points and should reduce
fluctuations due to sampling. If sampling effects were dominating, we would expect
to see the p-value for the drift hypothesis to decrease as the bins are widened
(i.e., increasing darkness in Figure 4). This happens for some, but not all the verbs in
the intermediate region, suggesting that drift may be the dominant factor in the
evolution of a substantial fraction of the COHA verbs (again, consistent with New-
berry et al. 2017). A more rigorous answer to this question could be obtained by
incorporating finite sample-size effects into the data likelihood function used in the
analysis. This is however likely to be computationally demanding, and we leave this
possibility for future work.
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In this work, we found plotting ellipses that indicate the variation in estimates of
the selection strength and the p-value for the drift hypothesis helpful to understand
which variants are more likely to have been selected for. A comparison between a
baseline set of verbs from the Google Books corpus and a set where the past tense is
formed by deletion of a repeated consonant reveals that they are distributed
differently across the space of selection strengths s and drift p-values. Specifically, we
found that the phonological simplicity arising from coalescence or omission of the
/Id/ termination tended to be favoured over the inflectional simplicity of the regular
form. In principle, the method we have set out here could be used to determine
the relative importance of other pairs of constraints that correspond to opposing
selective forces.

Finally, we showed that the method could be applied also to changes that do not
have a cognitive origin andmanifest as the selection strength changing over time.We
studied the dynamics of word spellings in Spanish before and after reforms intro-
duced by their central regulatory institution, the Real Academia Española. We found
that each of the changeswasmuch better described by amodel inwhich the selection
strength changed at one or more points in time, and that the primary change point
corresponded well with that at which the reform was introduced. This is despite the
presence of noise on the time series data. Since changes in selection strength could
derive from a variety of social and cultural factors, and indeed apply to cultural
evolutionary processes beyond language, this method for automated detection of
societal trends and shifts could have broad applicability.

Despite these promising results, there are inevitably some limitations. Chief
among these is an inability to separate different contributions to the selective
pressures acting on the system. Therefore, although it is possible to use this data to
determine that selection has favoured one variant over another over time, and to
estimate the strength of the effect, we have had to appeal to additional information
to relate to likely causes of selection. This, however, is a problem intrinsic to the
Wright–Fisher model with selection and not specific to the BwS method: the
Wright–Fisher model contains only a single parameter s that characterises all
systematic contributions to changes in variant frequencies.

This oversimplification of the contributing factors to language change stems, at
least in part, from the underlying assumption that the competition between forms
(e.g. irregular and regular verbal forms) occurs in isolation, uninfluenced by the
competition dynamics of related forms (e.g. irregular and regular forms of other
verbs). Yeh et al. (2019) and Buskell et al. (2019) argue in the context of cultural
evolution, that cultural change may arise as an emergent phenomenon when cul-
tural traits are interconnected. It is possible, then, that emergent system-level effects
may account for significant changes in usage frequency of variants that are not
favoured individually by any social or inductive bias. More refinedmodels, ones that
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account for the complex web of interconnected forms and functions present in
language, may be able to differentiate between these systemic effects and those
affecting individual variants. Such models might allow more information to be
extracted from corpora without the need for additional information.

Nevertheless, we have shown that it is possible to draw inferences about
contributions to selection from different sources (as was done in the analysis of
competition between regular and irregular forms in English verbs) and quantify
the impact of social factors (as was done in the language reform example). By
appealing to a wider range of corpora and instances of change, it may become
possible to identify general mechanisms that are invariant over time and operate
cross-linguistically, and are thus informative about language universals in general.
Furthermore, the method is not specific to linguistic variation, and could be used to
address similar questions in other instances of cultural evolution.
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Appendix

A Maximum likelihood parameters for the COHA verbs

In the following tables we quote the maximum-likelihood estimates of the parame-
ters in the Wright–Fisher model obtained by applying the Beta-with-Spikes method
outlined in the main text to frequency counts derived from the COHA corpus. Each
table corresponds to a different binning strategy: for example, in the first table,
frequency counts from each period of 10 consecutive years are aggregated to form a
single frequency estimate for the corresponding time period.

Selective forces in language change 29

https://osf.io/qxgnj/?view_only=de983f003307492bb6dd777ee3e36a39


Two different effective population sizesN are quoted: one (‘for drift’) under the
assumption that s = 0, and the other (‘for selection’) that is obtained when both N
and s are optimised via the maximum likelihood analysis. The p-value is the
empirical p-value for the drift hypothesis, obtained as described in Section 2 of the
main text. The maximum likelihood values are all quoted to three significant fig-
ures, and the p-values to two significant figures.

10-year bins

Verb N for drift N for selection s p-Value

Awake , , . .
Build , , . 

Burn   −. 

Catch , , . .
Dive   . .
Draw , , . .
Dream   −. .
Dwell   −. .
Grow , , . .
Hang , , . 

Hear , , . .
Heave   . .
Kneel   . .
Knit   −. .
Know , , . .
Lay , , . .
Lean   −. 

Leap   . .
Learn   −. 

Light   . .
Plead , , −. .
Quit   . 

Shine , , −. .
Smell   −. .
Sneak   . .
Speed   . .
Spell   −. .
Spill   −. 

Spoil   −. .
Strew   −. .
Tell , , . .
Throw , , . .
Wake   . .
Weave   −. .
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(continued)

Verb N for drift N for selection s p-Value

Wed   . .
Wet   . .

20-year bins

Verb N for drift N for selection s p-Value

Awake , , . .
Build , , . .
Burn   −. 

Catch , , . .
Dive   . .
Draw , , . .
Dream   −. .
Dwell , , −. 

Grow , , −.e- .
Hang , , . .
Hear , , . .
Heave   . .
Kneel , , . .
Knit   −. .
Know , , .e- .
Lay , , . .
Lean , , −. 

Leap   . .
Learn  , −. 

Light   . .
Plead , , −. .
Quit , , . 

Shine , , −. .
Smell  , −. 

Sneak   . .
Speed   . .
Spell  , −. 

Spill  , −. 

Spoil   −. .
Strew   . .
Tell , , . .
Throw , , . .
Wake , , . .
Weave , , −. .
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(continued)

Verb N for drift N for selection s p-Value

Wed   . .
Wet , , . .

40-year bins

Verb N for drift N for selection s p-Value

Awake , , . .
Build , , . .
Burn , , −. .
Catch , , . .
Dive   . .
Draw , , . .
Dream   −. .
Dwell , , −. 

Grow , , −. .
Hang , , −. .
Hear , , . .
Heave   −. .
Kneel , , . .
Knit   −. .
Know , , . .
Lay , , . .
Lean , , −. .
Leap   . .
Learn , , −. .
Light  , . .
Plead , , . .
Quit  , . 

Shine , , −. .
Smell  , −. 

Sneak   . .
Speed , , −. .
Spell  , −. 

Spill  , −. 

Spoil , , −. .
Strew   . .
Tell , , . .
Throw , , −. .
Wake  , . .
Weave , , −. .
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(continued)

Verb N for drift N for selection s p-Value

Wed   . .
Wet , , . .

B Maximum likelihood parameters for verbs in the study of
competing motivations

In this Appendix, we provide the corresponding tables for the set of verbs ending in
alveolar stops from drawn from the Google Books corpus. Dashes mean that the
corresponding time series did not have enough data points per time bin in the
corresponding binning for it to be included in the study.

5-year bins

Verb N for drift N for selection s p-Value

Bend , , . .
Bet – – – –

Bite , , . 

Blend , , . .
Build , , . .
Fit   . .
Glide , , −. .
Knit – – – –

Light   . .
Pat , , −. .
Plead , , . .
Quit   . 

Slide , , . .
Speed   −. .
Spit   . .
Thrust , , . .
Tread , , −. .
Wed . . . 

Wet – – – –

Awake , , . 

Blow , , . .
Burn , , −. 

Catch , , . 

Cleave   −. .
Creep , , . .
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(continued)

Verb N for drift N for selection s p-Value

Dive   . .
Dream , , −. .
Dwell , ,  .
Freeze , , . .
Grow , , −. .
Hang , , . .
Heave   −. .
Hew , , −. .
Kneel  , . .
Lean , , −. .
Leap , , . .
Learn , , −. .
Shake , , . 

Shear   −. .
Shine , , . .
Slay , , −. .
Slink , , −. .
Smell   −. .
Sneak , , . 

Spell   −. .
Spill  , −. .
Spoil , , . .
Strew  , . 

String , , . .
Strive , , −. .
Swell , , . .
Wake  , . 

Weave   −. .

10-year bins

Verb N for drift N for selection s p-Value

Bend , , . 

Bet   . 

Bite , , . 

Blend , , . .
Build , , . .
Fit , , . 

Glide , , . .
Knit – – – –
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(continued)

Verb N for drift N for selection s p-Value

Light  , . .
Pat , , −. .
Plead , , . .
Quit   . 

Slide , , . .
Speed   −. .
Spit , , . .
Thrust , , . .
Tread , , −. 

Wed   . .
Wet – – – –

Awake , , . 

Blow , , . .
Burn , , −. 

Catch , , . 

Cleave   −. .
Creep , , . .
Dive , , . .
Dream , , −. .
Dwell , , −. .
Freeze , , . .
Grow , , −. .
Hang , , . .
Heave , , −. .
Hew , , −. .
Kneel  , . .
Lean , , −. .
Leap , , . .
Learn , , −. .
Shake , , . .
Shear  , −. .
Shine , , −. .
Slay , , −. .
Slink , , −. .
Smell   −. .
Sneak , , . 

Spell  , −. .
Spill  , −. 

Spoil , , . .
Strew  , . 

String , , . .
Strive , , −. .
Swell  , . .
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(continued)

Verb N for drift N for selection s p-Value

Wake  , . 

Weave , , −. .

20-year bins

Verb N for drift N for selection s p-Value

Bend , , . 

Bet   . .
Bite , , . 

Blend , , . .
Build , , . .
Fit , , . 

Glide , , −. .
Knit , , −. .
Light  , . .
Pat , , −. 

Plead , , . .
Quit  , . 

Slide , , . 

Speed   −. .
Spit , , . 

Thrust , , −. .
Tread , , −. 

Wed   . .
Wet   . .
Awake , , . .
Blow , , . .
Burn , , −. .
Catch , , . 

Cleave   −. .
Creep , , . .
Dive , , . .
Dream , , −. .
Dwell , , −. .
Freeze , , . .
Grow , , −. .
Hang , , . .
Heave , , −. .
Hew , , −. .
Kneel  , . .
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(continued)

Verb N for drift N for selection s p-Value

Lean , , −. .
Leap , , . .
Learn , , −. .
Shake , , . .
Shear , , −. .
Shine , , −. .
Slay , , −. .
Slink , , −. .
Smell   −. .
Sneak , , . 

Spell  , −. .
Spill  , −. 

Spoil , , . .
Strew  , . .
String , , . .
Strive , , −. .
Swell   . .
Wake  , . 

Weave , , −. .

40-year bins

Verb N for drift N for selection s p-Value

Bend , , . .
Bet  , . .
Bite , , . 

Blend , , −. .
Build , , . .
Fit , , . 

Glide , , −. .
Knit , , −. .
Light  , . .
Pat , , −. 

Plead , , . .
Quit  , . 

Sit   . .
Slide , , . 

Speed   −. .
Spit , , . .
Thrust , , . .
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(continued)

Verb N for drift N for selection s p-Value

Tread , , −. 

Wed   . .
Wet , , . .
Awake , , . .
Blow , , . .
Burn  , −. .
Catch , , . .
Cleave   −. .
Creep , , . .
Dive  , . .
Dream , , −. .
Dwell , , −. .
Freeze , , . .
Grow , , −. .
Hang , , . .
Heave , , −. .
hew , , −. .
Kneel  , . .
Lean , , −. .
Leap , , . .
Learn , , −. .
Shake , , . .
Shear  , −. .
Shine , , −. .
Slay , , −. .
Slink , , −. .
Smell   −. .
Sneak , , . .
Spell  , −. .
Spill  , −. 

Spoil , , . .
Strew   . .
String , , . .
Strive , , −. .
Swell   . .
Wake  , . .
Weave , , −. .
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C Sets of words used in RAE reform detections

Old spellings of words in set (A): <ss>to <s>

assegurar, assentar, assentir, assunto, confessar, diesse, essa, esse, essencia, esso, estu-
viesse, fuesse, gustasse, hiciesse, passar, pudiesse, quisiesse, tassar, tuviesse, and usasse.

Old spellings of words in set (B): <x>to <j>

abaxo, baxar, baxo, bruxa, bruxería, caxa, conduxo, debaxo, dexar, dibuxar, dibuxo,
dixo, enxuto, exe, exemplo, exercer, exercicio, exército, floxo, fluxo, fixar, fixo, quexa,
roxo, texa, and traxo.

Old spellings of words in set (C): <y>to <i>

aceyte, aceytuna, afeyte, amaynar, ayre, bayle, deleyte, deydad, estoyco, frayle, gayta,
heroyco, layco, oyga, peyne, and reyna.

Old spellings of words in set (D.1): Word-final tonic syllable becoming
accentuated

accion, alacran, algun, almacen, atencion, bailarin, cancion, capitan, comun, corazon,
estacion, jardin, latin, nacion, ningun, opcion razon, recien, region, relacion, segun,
Serafin, situacion, tambien, and union.

Old spellings of words in set (D.2): Non word-final tonic syllable losing its accent

abdómen, álguien, Cármen, certámen, cólon, crímen, desórden, dictámen, exámen,
gérmen, jóven, márgen, órden, orígen, resúmen, and volúmen.

D Maximum likelihood parameters for time series in the study
of Spanish spelling reforms

Time series T N before s before N after s after p-Value

(A) , . −.  −. <.
,  −.  −. .

(B) ,  −.  −. <.
,  .  −. .
, , −.  −. .

(C) , . −.  −. <.
(D) ,  −.  −. <.
(D) ,  .  −. <.
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