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Abstract: It is known that maximal entropy random walks and partition functions that count long
paths on graphs tend to become localized near nodes with a high degree. Here, we revisit the simplest
toy model of such a localization: a regular tree of degree p with one special node (“root”) that has
a degree different from all the others. We present an in-depth study of the path-counting problem
precisely at the localization transition. We study paths that start from the root in both infinite trees
and finite, locally tree-like regular random graphs (RRGs). For the infinite tree, we prove that the
probability distribution function of the endpoints of the path is a step function. The position of
the step moves away from the root at a constant velocity v = (p — 2)/p. We find the width and
asymptotic shape of the distribution in the vicinity of the shock. For a finite RRG, we show that a
critical slowdown takes place, and the trajectory length needed to reach the equilibrium distribution
is on the order of v/N instead of log,_; N away from the transition. We calculate the exact values of
the equilibrium distribution and relaxation length, as well as the shapes of slowly relaxing modes.

Keywords: path counting; maximal entropy random walk; localization transition; critical slowdown

1. Introduction

One of the most natural ways to characterize a graph or a network is by its adjacency
and Laplace matrices [1,2]. The adjacency matrix of an N-node network is defined as N x N
matrix A, where the entry A;; = 1 if nodes numbered i and j are connected to each other,
and 0 otherwise. The elements of the Laplacian matrix L of a graph are defined as

Lij = degjoij — Ajyj @)

where deg; is the degree of node j. This matrix defines the relaxation of a continuous-time
diffusion process on a graph, i.e., the probability distribution to find a particle at one of the
nodes, P;(t) = (P.(1,t),PL(2,t),...,PL(N,t))T, evolves according to the following:

P; =LP, )

and, therefore, eigenvalues and eigenvectors of the Laplacian play a crucial role in describ-
ing the relaxation of a simple diffusion process on the networks (see, e.g., [3]).

It seems natural to ask whether there is a process whose relaxation is related in a
similar way to the eigenvalues and eigenvectors of the adjacency matrix. We define a
sequence of vectors Z(t) = (Z1(t), Z»(t),...,Zn(t))T that are dependent on discrete time
t, satisfying

Z(t+1) = AZ(t). 3)
Appended with the initial condition Z(0) = (1,1,..., 1)T, it can be interpreted as a vector

of partition functions counting trajectories of length t on a graph, with Z;(¢) counting
trajectories ending at the i-th node. Moreover, we define
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Pait) = Zi(1)/ Y 24(0) @
J

which is the probability distribution to find the end of a randomly chosen trajectory at point
i. A similar problem arises (although typically in a continuous space setting) in the classical
polymer theory [4-6], so the path-counting problem (PC) described above is also often
referred to as the counting of “conformations of an ideal polymer” [7,8]. Note the difference
between the probability distribution (4) and that of an endpoint of a symmetric discrete-
time random walk on a graph (2). Indeed, in a symmetric random walk, the probabilities of
trajectories are weighted inversely to the product of the degrees of the visited nodes, while

in the path-counting problem (PC), all trajectories are weighted equally.
Is it possible to reformulate a path-counting problem as a random walk problem, i.e.,

as a process satisfying

Pa(t+1) = TPA() ®)

with some stochastic transfer matrix T? To the best of our knowledge, the answer is “no”,
but for finite graphs, a very close approximation known as the maximal entropy random
walk (MERW) is possible [9,10]. Namely, if we define A1, ®1 to be the largest eigenvalue of
the adjacency matrix and the corresponding eigenvector, and choose the elements of the
transfer matrix as

T = A;lAji@, (6)

P1j

where ¢y; is the i-th element of ®;, then (i) these weights can be understood as step
probabilities of some random walk (indeed,

ZAji(Pli = Ay @)

so the probability is conserved), and (2) the trajectory weight in such a walk is only depen-
dent on its length, starting point, and endpoint, i.e., all trajectories with given lengths and
endpoints are equiprobable. As a result, if one considers sufficiently long MERW trajectories,
the density of links at a given site i becomes proportional to the square of the value of the
largest eigenvector at this site ¢7,, in full analogy with the density of the ideal polymer in
the external field [4,6].

Thus, on the one hand, MERW and PC problems are fundamentally related. Answers to
both can be fully formulated in terms of eigenvectors and eigenvalues of the same adjacency
matrix A. On the other hand, the probability distribution P 4(t) (probability distribution of
the endpoint of a trajectory of a given length) defined above for the PC problem has no direct
analog in MERW. We formulate our results below in terms of this probability distribution, so,
to avoid confusion, we restrict ourselves to the terminology of the path-counting problem,
although the results can easily be reformulated in terms of MERW.

The most striking feature of the PC and MERW as opposed to regular random walks
is the potential for localization. Indeed, while on any finite connected graph, P converges
to a uniform distribution for sufficiently long trajectories, it is not generally the case for P 4.
In fact, large-degree nodes work as entropic traps in the PC problem, which may lead to
the localization of trajectories. Perhaps the simplest system where such localization can
happen is a regular tree with a branching degree p and a single “special” node (“root”)
with a different branching degree pg. This system has been studied extensively in [8] (also
see recent generalizations in [11,12]) where it has been shown that for an infinite tree, there
exists a critical branching degree:

po = per = p(p—1), ®)

such that for root degrees pg that are smaller than p,,, sufficiently long trajectories span the
whole graph, and all nodes are visited with approximately equal probabilities; for larger
values of py, trajectories are localized in the vicinity of the root, causing the probability of



Entropy 2023, 25,1318

30f16

identifying the endpoint of a randomly selected trajectory at a distance x from the root to
decrease exponentially with x.

Interestingly, in the analogous MERW problem, which has been studied in [13], the
localization transition occurs at a different value of the root degree:

po=pe ' =2(p-1). ©
This discrepancy can be understood when recognizing that the large-f distributions of
trajectory inner points and their ends, typically studied in the MERW and PC setups, are
proportional to ¢%; and ¢y;. It is clear from the symmetry of the system that values of ¢y; can
only depend on distance x from node i to the root, ¢1; = ¢1,, and the probability of being at
distance x from the origin is proportional, up to the normalization constant to ¢7, (p — 1)*
and ¢1,(p — 1)* for inner points and endpoints, respectively. As a result, localization for
endpoints occurs if ¢, decays with x faster than (p — 1)~ *. For inner points, localization
occurs if the decay is faster than (p — 1)7*/2.

Notably, the standard Brownian random walk on a tree-like graph can be localized
around a single site, as discussed in [14], but for this to happen, one needs to apply a uni-
form global external field [14]. Indeed, a random walk on a tree-like graph can be mapped
on a biased random walk on a half-line [15], and if the external field is strong enough to
compensate for that bias [16], condensation occurs in a similar way to a random walk on a
half-line that is biased in the direction of the origin. Contrary to that, localization in the
path-counting problem occurs as a result of a point-like local disorder [8] or, equivalently, as
noted in [17,18], as a result of an external field applied only to the endpoint of the trajectory.
For Brownian motion, such localization is impossible; it is easy to see that in a potential
composed of a localized well at the origin and a constant bias steering away from it, the
Brownian walker always escapes.

In this paper, we revisit this system and pay special attention to the behavior at the
transition point pg = p. First, we consider the behavior on an infinite tree. Here, we prove
the results presented in [8], asserting that the distribution of the endpoint x of the trajectory
commencing at the root asymptotically has the form of a traveling wave

Pa(x,t) ~ %@(vt —x) (10)

where velocity v equals (p —2)/p and ©(x) is the Heaviside theta function. We calculate
the shape of the wave in the vicinity of the front, i.e., for vt —x ~ O(\ﬁ) Second, we
study the critical behavior of trajectories for pg = p on a finite locally tree-like graph with
a fixed degree of all nodes, except the root (random regular graph, RRG). In particular,
we find the limiting distribution P4 (x, t — c0) and show that this limiting distribution is
approached extremely slowly, so that the maximal relaxation time ¢,,,, ~ v N as opposed

t0 trepax ~ log(, 1y N for po # per.

2. Model and Research Questions

Following [8], let us briefly review what is known about path localization on an infinite
regular tree with a single special point. We consider an infinite tree graph with coordination
number p in all points, except for a single point (root) with a different coordination number
po > p. We are interested in the statistics of long paths on such a graph. On an infinite
tree, the parity of x + t, where x is the distance of the end of a t-step trajectory to the root,
is exactly conserved. For the statistics of the endpoints of long paths, three regimes are
possible [8].

If po < per, the typical trajectory escapes from the vicinity of the root, with an average
distance from the trajectory’s endpoint to the root growing as (x(t)) = (p —2)t/p. The
fluctuation of x(t) in this case is normally distributed with the width of distribution
proportional to v/t. This behavior is completely analogous to the behavior of a trajectory
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on the infinite regular tree (corresponding to pp = p), and can be described as a biased
discrete-time Brownian motion on a half-line.

In turn, if pg > per, localization occurs, meaning that the endpoint of a long trajectory
is localized in the vicinity of the root with (x(t)) converging to a constant for the large ¢,
and the probability of finding the trajectory’s endpoint at distance x away from the root
diminishing exponentially with x.

Finally, in a critical case, pg = p.r, very interesting behavior is numerically observed
in [8]: the probability of finding the end of an t-step trajectory starting from the root at a
distance x from it is roughly a step function:

2—pt_1 forx <« M and even x + ¢,
P(x,t)=<{ P—2 p (11)

0 otherwise,

with some crossover function linking these limiting regimes for x ~ (p —2)t/p (see
Figure 1b). However, this latter result has not been proven in [8].
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Figure 1. Distribution P(x, t) for trajectories of t = 100 steps for three different combinations of p and
po: (a) delocalized regime, p = 4, pg = 7, (b) critical regime p = 4, py = 12, and (c) localized regime,
p=4,p =15

In this paper, we focus on the details of the critical behavior, i.e., the path statistics
in a tree with branching degrees p in all points but the root, where the branching degree
is po = per = p(p — 1) in order to further elucidate the behavior in this regime. First,
in Section 3, we address the behavior of the infinite system and prove (11). In Section 4,
we discuss how the critical regime looks in the case when a tree is large but finite. We
show that it is important to distinguish between a Cayley tree (a regular tree with a finite
fraction of boundary nodes of degree one) in the limit of a large number of generations and
a random regular graph, i.e., a local tree-like graph where nodes far away from the root
are randomly connected to guarantee that each node—except for the root—has degree p.
In the first system, there is no critical behavior at p = p., for sufficiently long trajectories,
while for the second system, a very peculiar ultra-slow relaxation occurs.

3. Critical State on an Infinite Tree

Introduce a partition function Z;(x), counting the number of paths beginning at the
root, consisting of f steps and ending at a distance x from the root. It is easy to see that it
satisfies:

Zini(x)=(p—1DZy(x—1)+ Zi(x+1) forx>1
Zi1(x) = poZi(x — 1)+ Zi(x + 1) forx =1 (12)
Zi1(x) = Zi(x+1) forx =0

with initial condition Zy(x) = dy, and we are particularly interested in pg = per. The
introduction of a renormalized partition function W;(x) according to
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Zi(x) = /p—1 “Wi(x) (13)

allows us to symmetrize the equations, giving

Wipa(x) = Wi(x =1) + We(x +1) + (p = 1)1 Wi(x = 1) x>0

Wi(x) =0 x<0 (14)

Wt:O(x) = 5x,0
where we substitute the critical value of p according to (8). These equations define, for
non-negative integer indices ¢ and x, a two-parametric sequence W, which has a simple
combinatorial meaning. Indeed, for p = 1 it simply enumerates trajectories in the upper-
right quadrant, consisting of right-up and right-down steps (see Figure 2), which start at the
origin and end at the point with coordinates (t, x). For arbitrary p, it enumerates weighted
trajectories:

Wi (x) = Z p#visits of x=0 _ chn(x)p(mjtlféxlo)’ (15)
traj. from (0,0) to (,x) m

where we introduce C}" (x)—the number of trajectories from (0, 0) to (¢, x)—which return
to the horizontal axis x = 0 exactly m times. Note that the trajectory acquires weight p
every time it leaves x = 0, so the additional 1 in the power on the left-hand side accounts
for the initial step, and the Kronecker symbol d, ¢ accounts for the scenario where, for x = 0,
the trajectory is still on its last return without having left 0.

X
1 3 4
2
t
X
1 3 4
2/
t
x 4
3
1 I i

Figure 2. Illustration of the bijection between trajectories from (0, 0) to (¢, x) visiting 0 m times and
trajectories from (0,0) to (+ — m, x + m) not visiting zero, reflected in Equation (16). To get from
trajectory shown in the top panel to that shown in the bottom panel, remove the steps highlighted
in red, and move the remaining pieces so they are joined together. To get from trajectory shown in
the bottom panel to that shown in the top panel, insert (1,—1) steps (red lines) in place of the red
dots. Red dots are points where x = 1,2, ..., m for the final time, i.e. rightmost intersections of the
trajectory and x = 1,2,...,m lines (dotted lines).

To calculate C}" (x), note that there is a bijection between all paths going from (0, 0) to
(t, x) that visit the horizontal axis m times, and all paths from (0,0) to (t — m, x + m) that
never visit the horizontal axis; therefore,
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Ci'(x)

Cl'(x) = CY_, (x +m). (16)

This bijection is constructed as follows. Consider first a path from (0,0) to (¢, x) that
intersects the horizontal axis m times and exclude from it all the steps from x = 1 to
x = 0 (marked in red in Figure 2); shift the remaining parts of the path upward and to
the left so that they form a continuous path. Clearly, the resulting path goes from (0,0) to
(t — m, x + m) without returning to the horizontal axis. Consider now an arbitrary path from
(0,0) to (t — m, x + m) that does not visit the horizontal axis; for each vertical coordinate
value from i = 1 to i = m, mark a point (¢;,i) on the path where it is attained for the
final time. It follows from x + m > m that these points exist and form a strictly increasing
sequence t] < tp < --- < t;;. Now, split the path in these points, shift each of the resulting
subpaths by vector (i, —i), and insert downward steps connecting these paths together, as
shown in Figure 2. Clearly, the path resulting from this transformation is a path from (0, 0)
to (¢, x), visiting the horizontal axis exactly m times. It is easy to see that in both the direct
and reverse transformations, different initial paths result in different transformed paths;
thus, there exists a one-to-one correspondence between these two path classes, proving
(16). In turn, the number of paths not visiting zero C?_,, (x + m) can be easily calculated,
e.g., by the method of images, with the result being

C?,m(x +m)=

t—m—1 t—m—1
<[(t—m—1)+(x+m—1)]/2> B <[(t—m—1)+(x+m+1)]/2>: (17)
t—m-—1 t—m—-1\ x4+m( t—m
<(t+x)/2—1) B ((t—i—x)/Z) T t—m ((t+x)/2)'
Substituting this result into (13) and (15), we obtain the following;:
x(tfx)/zx_i_m f—m .
Zi(x) = (Vp -1 ) tm<( >P 100z, (18)

= t+x)/2

Consider now the asymptotic behavior of this expression. Assume that ¢, x > land x/t = a.
Then, after replacing factorials with their approximate values using the Stirling formula
and introducing notation,

B=01—-w)/2, {=m/(tp), (19)

obtain

A e =l = I e ) B

Substituting this expression into (18), rewrite the partition function in the following ap-
proximate form:

Zu(wt) ~ BpVE(p 10 [ () O, ey
where
 f8in (BO=OY g (1P
0@ =tpmp—-tpn( B ) —a-pm(sry) @
and

a+Gp
V21— B)(1-¢)(1-Cp)
The partition function, thus, takes the form pertinent to the application of the Laplace
method. It is easy to see that the stationary point &y defined by ¢’(¢) = 0 is given by

¥(G) = (23)
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Pp—1
Go = (24)
Pr—p
and belongs to interval 0 < ¢y < 1if § € [1/p,1] and, thus, « € [0, (p —2)/p], while for
larger «, the maximal value of ¢(&) is reached for ¢ = 0. Thus, the Laplace approximation
gives the leading asymptotic of Z;(«at) for any fixed a. If & < (p —2)/p it gives

Zi(wt) ~ (p— 1)/ 0P ppi )¢<¢o>ef¢<¢°>—pp‘2pf, (25)

t¢”(€ p—1

and Z(at) = Zy(t) is an a-independent constant, while fora > (p —2)/p

(0)e#©)
t'(0)

t
_ —ap p(p—1\"P
In (96) Zﬂﬁ(l—ﬁ)t[ﬁ (15

Thus, in the limit of large £, the solution has the shape of a traveling wave. The probability
distribution of the position of the trajectory’s endpoint

Z(x)
¥y Zi(y)

Zilut) ~ —(p— 1)10-P) pf LI

< Zo(b). (26)

P(x,t) = 27)

is constant up to x = vt, where v = (p —2)/p, and is asymptotically zero for a larger
x. To elucidate the shape of the wave near x = vt, note that the Laplace approximation
implies replacing the limits of integration in (21) with plus and minus infinity. For a
better approximation of x = vt + Av/t, one should replace the integrand in (21) with the
corresponding Gaussian function, but retain the correct integration limit, giving

Zot + AVE) = (p — 110/ p(go)et#eo [0 ) g

1 p-2 pA
2pp p' erfc (8(]0—1))' (28)

Figure 3 shows that this expression provides a satisfactory approximation to the shape of
the wave at A.

2.5 1

2.0

1.5 1

Zi(x)/pt

1.0 1

0.5

0.0
0.0 0.2 0.4 0.6 0.8 1.0

X/t

Figure 3. Numerical (magenta) and asymptotic (blue) envelopes of the wave Z;(at)p~! as functions
ofwfor p =4, po = per = p(p — 1) =12, t = 200.
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4. Critical Behavior on Finite Graphs
Thus, we have proven in the previous section that the distribution of the endpoint of a ¢-
step trajectory on an infinite critical tree reaches a limiting shape of the form erfc [C (x—ot)/ \/f} ,

moving toward infinity with constant velocity v = (p — 2)/p. In a finite system, this process
cannot continue forever: at some point, the expanding wave feels that the system is finite.
Clearly, the number of steps at which this occurs is determined by the following;:

InN ~ob s tacte = P InN
In(p—1) Noip—2ln(p—1)

where N is the total number of nodes in the graph. Further evolution depends on how
exactly the finite tree is defined. Indeed, the notion of a “finite tree with constant degree
p > 2" isill-defined. A finite tree of N nodes has exactly N — 1 bonds and, therefore, must
have an average degree 2(N — 1)/N = 2. This discrepancy is usually resolved in one of
two possible ways. One option is to consider a k-generation tree; it has a boundary layer
consisting of pg(p — 1)~ ! nodes with degree 1. These nodes maintain a final fraction of
the system size when k — oo and shift the average node degree to 2. Another option is to
consider a graph in which all nodes have degree p (except for the special node with degree
po), but which is only locally tree-like. This means that while in such a graph there are no
short cycles (i.e., it is locally tree-like), it does contain long cycles with a minimum length
on the order of ¢y. We will call this option a random regular graph (RRG). A more detailed
discussion of the terminology is presented in the next section.

The qualitative trajectory behaviors in both cases are similar to the behaviors on an
infinite tree only up to a trajectory length of around ;. For larger trajectories, the behavior
is radically different.

Indeed, on a large but finite tree, whenever the expanding distribution reaches the
boundary, it becomes stationary; for any ¢ > ¢y, it remains essentially the same, namely, the
probability of the trajectory to the end at distance x from the root is x-independent and
roughly (up to some minor deviations near x = 0 and x = k) equals:

(29)

2/k ift+ xis even,
P(x,t) = (30)

0 if t + x is odd

which means that the probability of ending the trajectory at any given node of the tree is,
in fact, proportional to (p — 1) ~* (considering that there are roughly p(p — 1)* nodes at a
distance x from the root).

However, as we show in the next section, both the limiting behavior and the typical
length needed to reach it, are radically different in the case of the RRG. Indeed, in the limit
of large t, the trajectory’s endpoint distribution consists of two zones, namely, the zone
close to the root, where the likelihood of finding the trajectory’s end decays with x at a rate
of (p —1)7*, and the remaining bulk of the system, where the probability of finding the
trajectory end remains position-independent. However, the trajectory length ¢,,;,, needed
to reach this final state is extremely long, ¢, ~ VN (compare this with ty ~ In N).

Random Regular Graph (RRG)

Consider a graph constructed as follows. Take a k-generation tree with degree p at all
branching points except the root, and degree pg = por = p(p — 1) in the root. This tree has
p(p — 1)k “leaves” (periphery nodes of degree one). Now, add p(p — 1)¥*1/2 new bonds
connecting the leaves in a way that each leave becomes a node of degree p. Such graphs are
reminiscent of the random regular graph (RRG) ensemble (which is defined as a maximal
entropy ensemble of graphs whose nodes have a constant degree p) in the sense that it is
locally tree-like (the probability of forming a short cycle is exponentially small in k), and
all nodes, except for the root, have a constant degree p. The most important difference
between the graph defined above and the true RRG ensemble is as follows: in the former
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the shortest cycle, which includes the root, has, by construction, length 2k, while in the
latter there exist shorter cycles, which include the root. However, the fraction of such cycles
exponentially decreases with 2k — [; therefore, we expect the difference to be negligible.

To check whether the resulting graphs are similar to the true RRG, we calculate (see
Figure 4) the eigenvalue spectrum of an ensemble of such graphs (trees with randomly
connected external nodes) for py = p and compare it to the known limiting distribution for
the true RRG ensemble [19,20]

pVAp—1) - A2 _
o= ooy rM<zvp-t o1

0 otherwise.

Clearly, the distribution is very close to the limiting one, except for k delta-functional peaks
reflecting the existence of a regular tree sub-graph. However, the relative sizes of these
peaks decrease, and for a large k, the distribution converges to the Kesten-McKay result
(31). This result is, in fact, to be expected, given that the only assumptions needed to prove
(31) (see [20]) are (i) that all nodes have the same degree p, and (ii) the concentration of a
cycle of any finite length m converges to zero with the growing size of the network; both
are true for the suggested tree closure construction.

For the purposes of this paper, the most interesting question is the behavior at the
edge of the spectrum, where the properties of the true RRG ensemble, and our model RRGs
are exactly the same. For py = p, there is a single maximal eigenvalue A1 = p, reflecting
the fact that—on each next step—every trajectory has exactly p possible continuations,

and the continuous spectrum with density converges to 0 as p(A) ~ /A3 — A2, when

|A| = Ay =2,/p —1 < Ay, so there is a k-independent final gap between the maximal and
second-largest eigenvalue.

Let us now calculate the distribution of the endpoints of a t-step trajectory on such
a quasi-RRG graph. To do that, we introduce a (k + 1)-dimensional vector Z;, so that the
x-th component of this vector equals the number of ¢-step trajectories starting from the root
and ending at distance x.

The recurrent relation for the number of paths can be written in matrix form:

T
Zi=TZ Zy= (1,0,0,. ) (32)
with the tri-diagonal (k + 1) x (k + 1) transfer matrix T

0 1 0 0 0

pp 0 1 0 0
0 p—1 0 1 0o ...
T= : . . . . (33)
0 0 p—1 0 1

0 0 0 p—1 p—1

Note the (p — 1) entry in the lower-left corner of the transfer matrix. It corresponds to the
trajectories “jumping” from one node of the k-th generation to the other along the random
connection bonds shown in Figure 5. It is this single entry that distinguishes the transfer
matrix of the RRG graph problem from the transfer matrix Ty of the finite tree one, where
this entry equals 0.
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Figure 4. Eigenvalue spectrum of the approximate RRG graph created by a procedure shown in
Figure 5 for p = 3,k = 9 averaged over 100 independent realizations (histogram) vs. the limiting
spectrum of the true large RRG graph given by (31) (red line). Note the spectral gap between the
largest eigenvalue A1 = p = 3 and the edge of the continuous spectrum at A = 2,/p — 1 ~ 2.828.

Figure 5. A sketch of a model graph with a fixed degree p = 3, except for the root; up until the
k = 3’rd generation from the root with degree py = 5, the graph is a tree, and the outer nodes are
connected randomly with each other so that their degree equals p.

It is easy to see that all eigenvalues of both T and T are non-degenerate and real.
Indeed, it is sufficient to note that O~ 1TQ, where Q is a diagonal matrix with elements

= /P2t On=(p—Difor1<x<k (34)

is a symmetric tri-diagonal matrix. The decomposition of T allows us to write

Z, =) _Mli)ilZo (35)

where index i enumerates the eigenvalues and eigenvectors of T. Assume for convenience
that the eigenvalues are enumerated in decreasing order of their absolute value: [A;| >
|A2| > |Az| > .... Clearly, the large t, asymptotic of the partition function, is controlled by
the eigenvalues with the largest absolute values and corresponding eigenvectors.
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The eigenvalue problem for the transfer matrix Ty has been studied at length in [8,21].
The characteristic polynomials of that problem P, (A) satisfy

_ Po
P—l - p _ 1/
P, = A (36)
Pk = /\Pk—l — (p — 1)Pk_2, k Z 1
And have the explicit form
Pk — C+Vk+1 +C_ ]/lk+1 (37)
where
\/ﬁ
e = AE/A 1 ﬁuil 38)
and
Po AMpo—2(p—1)) Po ( Po )M +1
Cy = = -1 , 39
FTop-1) T ap-nya-ap-1 2p-1  \2(p—1) -1 &)

where we introduce parametrization

A=p—1(u+1/u). (40)

Notably, parametrization (40) means that u is real for [A| > 2,/p — 1 and imaginary other-
wise.

To proceed further, replace py = p(p — 1) and note that characteristic polynomials
D(A) = det(AI — T) of the RRG transfer matrix T are easily expressed in terms of P;(A)

Di=A—p+1)Pq—(p—1)P_p. (41)

Given that we are interested in eigenvalues with the largest absolute value, we concentrate
here on the real solutions of the characteristic equation Dy(u) = 0. After substituting
(37)—(40) into (41), we rewrite it in the form:

—2(k+2) _ (I+o/u)(1- U/u)2

" 1+ ou)(1 — ou)?

(42)

where we introduce notation v = /p — 1. For every k, this equation has three roots, 115 3,
converging to the zeros of the numerator for the large k:

U3 =0v-+€13 Up=—-0+€, €123 0fork — (43)

Expanding (42) up to second order in € and solving the resulting equations, we obtain the
following finite-size correction terms for positive

€13 = iUZ; L/a q;vZ) v k- L+ 021(:3)2 — 1)2kv_2k+
N (02 —1)(3v* +20% + 3) 0% o) (4d)
803
and negative
o = (@ -1)(1+2*)° o2 | o(u2h) (45)

403

eigenvalues, respectively. After returning to the original variables, we obtain
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2 1 2(p—1)
_9)\2 2
e A R CEERCY
and
2 _9\2
pa=—p+ BEZD - o((p- 1)), )

Figure 6a,b show the asymptotic behaviors of the discrepancies A; — A;(k = c0) as compared
to their approximate values given by (46) and (47).

In|A + p|

30
20
10
Ex
> VWV
0

4 6 8 10 12 14 16 18 0 5 10 15 20 25 30

k X
(b) (o)

Figure 6. (a,b): Largest eigenvalues of the transfer matrix T as functions of k for p = 3 in the
logarithmic (main) and linear (inset) scales. (a): Absolute value of the difference between positive
eigenvalues A1 3 and p; numerical results are shown in blue (A1) and red (A3) triangles; asymptotic
(46) is shown by magenta and green lines. (b) Absolute value of the difference between the negative
eigenvalue A; and —p with an inserted plot of eigenvalues in a normal scale. (c): Components of
eigenvectors ¥() i = 1,2,3 as functions of coordinate x for p = 4,k = 30; numerical values and
asymptotic given by (53) and (54) are shown. ¥(1): Red triangles and green line; ¥2): black triangles
and blue line; ¥(3): light green triangles and purple line, respectively.

We notice that, in the limit of the large number of generations, the gaps between the
absolute values of the three leading eigenvalues are exponentially small:

p(p—2)7 —k/2
A =AMy = | = -1 4
M A2 \/; p—1 (p=1)7% 48
where we use notation AA; = |A;| — |A;41], indicating that trajectories on the order of

(p —1)¥/2 ~ /N steps are needed to reach the asymptotic distribution of the endpoints.
Note that since there are only three real solutions of (42), the remaining eigenvalues

A <2y/p—1, i>4 (49)

and these are separated from the triplet defined by (46) and (47).

To understand the limiting distribution of the endpoints, as well as the modes that
demonstrate a remarkably slow decay, let us find the eigenvectors corresponding with
these three leading eigenvalues. Let ¥; be the i-th eigenvector, i.e., a solution to

(AMI-T)¥; =0, (50)
)

and ‘I’,(f) be its x-th element. Choosing the initial condition ‘I’(()i = 1 and solving recursively

with respect to x, we obtain

v =P 1 (A) x=1,....k (1)
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where P,_1(A) is defined above in (37). Noticing that

Pey(A=p)=p; Pra(A=—p)=(-1)p (52)

and expanding Py_1(A) in the vicinity of these points, we obtain the following in the leading
order:

¥~ p/2p(p - 1)) (53)
and

Thus, from the point of view of the senior eigenvector ¥1, the graph consists of two different
zones: X S % and x > k. In the first zone (see Figure 7), the probability distribution over
x is flat, while in the second, it grows as (p — 1), i.e., proportionally to the number of
nodes in the x-generation. Thus, the probability of the trajectory ending at a given node
is position-independent in the second zone and proportional to (p — 1)~ (where x is the
distance from the node to the route) in the first zone.

Turning to the distribution of the trajectory endpoint:

Zt(.X)

P(x,t) = 7Zy 7

(55)

for the finite trajectory length, and combining the results with what we know from the
previous section, we understand that there are two very distinct regimes in the evolution of
this probability distribution. For small ¢ S to, where t is defined by (29), the trajectory is
yet to reach the boundary, so the probability has the shape of an expanding wave studied
in the previous section (28). At around ¢y, the wave reaches all points of the graph and the
distribution becomes numerically very close to (30):

11
P(x,to) = (1+(~1)0 ) ¢ = (P + ¥ 2(-1)ow ), (56)

where the last equation provides the approximate linear expansion of P(x, ty) in terms of
the leading eigenvectors, and A is a normalizing coefficient. Thus, for t > t, one expects

P(x, t) ~ /\i_tOIFJ(cl) + Ag_mlf’gc?)) + 2(_1))50/\;—1‘01};&2)

t—t t—t
¥ (1-20) el - (1-5)

1

(57)

so it takes approximately

- M p=1 k2o V2P 1)
trelax—r)\l—\/zip(piz)z(]?*l) ~ (p_2)3/2\/ﬁ (58)

steps to reach the asymptotic limit (here,

N:1+P(pp__21) [(p—1)F 1] (59)

is the total number of nodes in the graph).
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-1
Figure 7. Evolution of the end-of-trajectory probability distribution P(x, ) = Z;(x) (Ey Zy (y)) onan

RRG with (A) k = 10 and (B,C) k = 20 generations and branching degree p = 3. The branching degree
-1
of the root is critical, pg = per = p(p — 1) = 6. The limiting distribution P (x) = ‘I"S) (Zy ‘I’;l) )

(53) is shown by the black line. (A) The results for trajectories with lengths t = 20 (red, propagation
regime), 30 (orange, crossover from the propagation to slow relaxation regime), 60 (green), 200 (blue).
The intermediate asymptotic (56) is shown by the dashed line; (B) the results for trajectories with
lengths t = 20 (red, propagation regime), 60 (orange, crossover from propagation to slow relaxation
regime), 200 (green), 600 (blue), 2000 (purple), 6000 (magenta); the intermediate asymptotic (56) is
almost indistinguishable from the orange line; (C) the same as (B) but in logarithmic coordinates.

5. Discussion

In this paper, we studied the behavior of the path-counting partition function on the
infinite tree, and on a random regular graph with a point-like disorder in the case of critical
disorder strength. We show that, while on an infinite tree the evolution of the probability
distribution at the end of the path has a step function form that expands with the constant
speed v = (p — 2)/p, as conjectured in [8], the behavior on the finite RRG is much richer
and consists of two regimes. There is a fast (on the order of o ~ log, ; N) expanding
wave regime, similar to the evolution of the infinite system, followed by a much slower
relaxation with maximal relaxation time (on the order of t,,j5, ~ v/N). This regime is an
example of a critical slowdown and, remarkably, it is completely unattainable when studying
infinite systems. Indeed, while for any reasonable value of N t; may seem quite small, it
formally diverges as N — co.

The existence of the critical slowdown regime can be qualitatively understood from the
fact that, in the thermodynamic limit, at the critical point, the transfer matrix of the problem
has multiple eigenvalues with exactly the same absolute value (in the case considered
here, there are three of them, reflecting a conservation of the parity of t 4 x, in the absence
of such additional conservation laws, there are typically two). Meanwhile, the maximal
eigenvalue of the adjacency matrix of a finite connected graph is non-degenerate [1], which
dictates that there must be a finite gap between these eigenvalues in any finite system. It is
natural to expect this gap to be quite small in the case of a large graph, that is, to be much
smaller than what one expects away from the critical point where the gap remains finite
even in the infinite graph. This qualitative consideration explains why one expects the
critical slowdown to occur.

One expects that such a slowdown is a general phenomenon, which should be typical
in the study of localization transitions on other large but finite graphs. One example is the
Anderson localization on the Bethe lattice [22,23] (also see review [24]) and on RRG [25,26],
which has been actively studied recently due to its suggested connection to the many-body
localization problem [27]. Indeed, the exponential divergence of the diffusion constant in
the vicinity of the critical point [22] is reminiscent of the critical slowdown discussed here.

Another relevant example is the celebrated quasispecies model [28] of biological
evolution. The model can be briefly formulated as follows. Consider a set of possible
genomes ce = (07,0, ...,04), consisting of d binary variables 0; = 0, 1, so that there are 24
possible genomes. We introduce a population function Z(ce, t), reflecting the occurrence
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of each genome at time t. Then a discrete time evolution of the quasispecies model in the
absence of the niche size constraint reads

Z(et+1) =ae Y TeeZ(e,t) (60)
(El

where a¢ is the fitness of the genome e and Il & is the probability of obtaining ce
while copying @', allowing for possible copying errors. In this system, depending on
the probability of copying errors, a localization—delocalization transition, often called the
error threshold or error catastrophe [28,29] (also see the pedagogical presentation in [30]) is
possible. In the localized state, the observed genomes are close to the optimal one (i.e., the
one with the highest fitness) and form a localized cloud known as a quasispecies, while in
the delocalized state, all genomes appear with equal probability.
We make numerical simulations of this system for the simplest case, where

toe =1+ (2= Doy M = (1= D)0 + Toa1 (61)
where cey is the genome with optimal fitness, « > 0 and q € (0,1) are parameters, and
dy = dy (e, ') is the Hamming distance (the number of differences in genome letters)
between genomes ce and ce’. For simulations, we use d = 60 and g = 0.5 and find that
localization transition occurs at &« = d — 1. Moreover, Figure 8 shows that there is strong
evidence of critical slowdown at the critical point (Figure 8b), where the number of steps of
the time evolution needed to approach the limiting distribution is 1-2 orders of magnitude
larger than in the bulk of localized (Figure 8a) and delocalized (Figure 8c) states. We are
not able to solve this model analytically but we suggest that the simpler, exactly solvable
model presented in this paper can serve as a toy model for this more complex one.

1‘0 2‘0 30 40 50 60 10 z‘o 3‘0 40 50 60 10 20 3:) 40 50 60
d d d
() " (b) " (c) "

Figure 8. Probability IT of observing a genome at a distance dp from aey after ¢ steps of evolution
(60) and (61) starting from the initial condition Z (e, 0) = de,e, for (a) localized, (b) critical, and (c)
delocalized states of the quasispecies model. Parameters are d = 60,9 = 0.5, & = (a) 69, (b) 59, and
(c) 49. In all panels, black lines represent the limiting distribution (the eigenvector corresponding to
the largest eigenvalue of the transfer matrix), colored lines represent the distributions after t = 20
(red), 60 (green), 200 (blue), 600 (purple), and 2000 (magenta) steps of the evolution. The distribution
I1(dy, t) is defined in a natural way: I1(dy, t) = L Z(0®, )04, (ce,ce0),dps / Lce Z(®, 1)
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