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Abstract

Object recognition in natural images has achieved great success, while recognizing
objects in style-images, such as artworks and watercolor images, has not yet achieved
great progress. Here, this problem is addressed using cross-domain object detection in
style-images, clipart, watercolor, and comic images. In particular, a cross-domain object
detection model is proposed using YoloV5 and eXtreme Gradient Boosting (XGBoosting).
As detecting difficult instances in cross domain images is a challenging task, XGBoosting is
incorporated in this workflow to enhance learning of the proposed model for application
on hard-to-detect samples. Several ablation studies are carried out by training and evaluat-
ing this model on the StyleObject7K, ClipArt1K, Watercolor2K, and Comic2K datasets.
It is empirically established that this proposed model works better than other methods for
the above-mentioned datasets.

1 INTRODUCTION

Now-a-days, machine learning methods are stunningly capable
of art image generation, segmentation, and detection. Over the
last decade, object detection has achieved great progress due to
the availability of challenging and diverse datasets, such as MS
COCO [1], KITTI [2], PASCAL VOC [3] and WiderFace [4].
Yet, most of the existing object detectors are domain-specific,
as training and testing are typically carried out on the same data
set. This situation may, for example, be rooted in the presump-
tion that there exists some underlying non-trivial domain shift,
due to which a model trained using one dataset may proba-
bly not work well on another kind of dataset. Object detection
has achieved remarkable performance for natural images, but
the detection task is less explored for stylized images includ-
ing artworks; for example, object detection remains harder in
paintings, watercolors, clipart, and comic images. This situa-
tion is partially driven by the relative scarcity of large-scale
annotated datasets for object detection of stylized images, not
even speaking of artworks that do not follow a Euclidean
convention of space and object representation. Meanwhile,
object detection in stylized conventional images, and eventually
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non-representational, such as cubist or semi-abstract images,
would be an appreciated capability in art research, including
for the appreciation of art market value, where our style-image
object detection could improve meta-data and facilitate search
for visual motifs.

Over the recent few years, computer vision has successfully
developed deep-learning based methods for visual object detec-
tion and recognition in natural images, including photographs
[5, 6] and videos. The latter includes a recent contribution by the
first author, using a similar workflow pipeline to recognize dif-
ficult examples in drone videos. Meanwhile, within the domain
of stylized images, including artworks using a more or less con-
ventional mode of object representation, several challenges of
“domain shift” remain, constituting a hurdle for object detec-
tion between natural images to stylized images. These challenges
necessitate specifically tailored algorithms for artwork images
[7, 8]. In this research work, we contribute to this area by per-
forming a computer-aided study of non-natural stylized images,
toward opening the way for more advanced tasks, such as a
first iteration of automatic artwork image captioning applied to
large digital image collections, [9], and further extensions of the
presented method to less conventional artworks.
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FIGURE 1 The StyleObject7K dataset includes images that are stylized in different ways, starting from “natural” images, as a proxy for conventional art styles,
yet with a known underlying ground truth and visual features of object, which are depicted from a multitude of perspectives, do vary across different style
transformations. The purpose of the dataset is to create a controlled challenge for our machine learning classifier.

In stylized images, including even fairly realistic artworks,
object detection becomes particularly challenging as an object
can be represented subject to what boils down to non-natural,
often non-linear pictorial transformations or filters, for exam-
ple, summarizing to conventional artistic styles such as Impres-
sionism, and so on. The texture and visual features of the same
object can furthermore drastically vary and change from one art
style to another. In our study, we simulate such variance in a con-
trolled way, using a set of image transformation over previously
“natural” images, as shown in Figure 1. We specifically follow
the style transfer work of [10], which establishes that neural net-
works prioritize image texture over its shape for classification
of images.

For this work, our goal is to propose an implementation of
YoloV5 with bootstrapping using gradient-boosting for cross-
domain object detection in stylized art and non-photographic
images. In general, the tasks associated with our research
program may include:

∙ Artwork attribute prediction
∙ Object detection and recognition in artwork images
∙ Photo-realistic translation of artworks
∙ Fake artwork detection
∙ Emotion recognition in artwork images
∙ Visual Q&A and artwork captioning (iconographic enrich-

ment)

Here, our work focuses on a single task of object detection in
artwork images.

The target audience for our application are practitioners in
the nexus of art research, visual culture research, yet also the
deep learning and computer vision community more broadly.
Section 2 of this paper summarizes relevant related literature.
Section 3 explains our proposed methodology, while Section 4
discusses experimental details and results. Finally, in Section 5,
we conclude our paper.

2 RELATED WORK

Object detection refers to detecting and localizing objects in an
image from pre-defined classes. As such, object detection tasks,
like recognition and localization tasks, have widespread appli-
cations in real-world scenarios and can be considered to be an
important sub-domain of computer vision. In this section, we
briefly describe the related work and development in (i) Yolo
object detection, (ii) object detection in artwork and stylized
images, and (iii) boosting algorithms.

2.1 YOLO object detection

Object detection is broadly categorized into (i) single-staged and
(ii) two-staged object detectors. Single-staged anchor-free object
detectors include Yolo [11] and SSD [12] architectures, whilst,
two-staged object detectors [13–16] include region-proposal
networks in the first stage and object classification in the sec-
ond stage. The very first version of YOLO (You Only Look
Once) was proposed by [11] as an end-to-end neural network
for predicting bounding boxes and class labels at once. The pro-
posed Yolo architecture was considered to be much faster over
its contemporary methods and operating at up to 45 fps. The
Yolo method divides the image into N × N grids, where each
grid contributes to detecting and localizing the object it con-
tains. Then on top of such grids, B number of bounding boxes
are created. So-called non-maximum suppression is operating
at the next stage, where the smaller bounding boxes are sup-
pressed, and we are left with the only boxes which contain the
entirety of recognized objects in an image. Yolo architecture is
inspired by GoogleNet [17] and contains 24 convolutional layers
and two fully-connected layers.

A second version of Yolo architecture was released as YoloV2
by [18] in order to overcome the limitations of the Yolo frame-
work for small object detection and better localization accuracy.
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A special architecture of YoloV2 was released as YOLO9000
which could detect more than 80 objects of the large benchmark
MS COCO dataset [19] of around 330 k images of everyday
objects and humans. YoloV2 also introduces batch normaliza-
tion which increases mean Average Precision (mAP). YoloV3
[20] includes the 106-layered Darknet-53 as backbone architec-
ture, with other modifications, such as having residual network
and skip connections. YoloV3 detects features at three different
scales and performs better than YoloV2 and Yolo in terms of
small object detection. YoloV4 proposed by [21] resulted in a
further improvement of YoloV3, claiming novelty by including
Weighted Residual Connections, Cross Mini-batch Normaliza-
tion, and Self-Adversarial Training. The YoloV4 tiny version
operates at 65 frames per second, with a slight decrease in
prediction accuracy. YoloV5 released by Ultralytics consists of
a family of Yolo object detection models pre-trained on the
MS COCO dataset and with Pytorch implementation. The
versions higher than YoloV5 were not released at the time
experimentation and this research work was carried out.

In literature, researchers have modified the original YoloV5
and proposed different variants for YoloV5 for various appli-
cations. Guo et al. [22] addressed the problem of road damage
detection such that the backbone architecture of YoloV5 was
replaced with MobileNetV3 for road damage detection. A very
challenging task of Human action detection in drone images
was carried out by [23] using YoloV5. Yan et al. [24] devised
a practical application of YoloV5 where a small-scaled YoloV5s
was deployed on an NVIDIA Jetson Xavier appliance for auto-
matic pavement crack detection. A tiny-YoloV5 is proposed by
[25] as light-weight deep learning model for Intelligent Edge
Surveillance and the Internet of Things.

2.2 Object detection in stylized images

Cai et al. [26] first attempted to detect cross-domain objects
using a CNN model pre-trained on a large dataset of natu-
ral images and then fine-tuned on a smaller labelled artwork
dataset. Crowley et al. [27] and [28] attempted to detect objects
in paintings. Westlake et al. [29] proposes a new “People-Art”
dataset for detecting human individuals in photos, cartoons, and
different artwork images. The authors propose a CNN architec-
ture and fine-tune it on the People-Art dataset. In [30], a weakly
supervised object detector is proposed for paintings where only
the image-level annotations are provided during training. The
authors also propose an “IconArt” dataset where the model is
trained to learn new classes which were not provided before or
during the training. Smirnov et al. [31] used VGG-19 as network
architecture for object detection in fine-art paintings.

2.3 eXtreme gradient boosting

XGBoosting efficiently implements an ensemble of stochastic
gradient boosting algorithms and has been a winning solution
for several different machine learning competitions. The proce-
dure of XGBoosting has been combined in different ways with

convolutional neural networks. Khan et al. [32] introduced the
new idea of channel-boosting in CNNs for better exploiting the
transfer learning. Wu et al. [33] proposed boosted CNNs for
enhancing the performance of pedestrian detection. Kalaivani
et al. [34] implemented ensembles of boosted CNNs for seg-
mentation of infected lungs in x-ray images. Memon et al. [35]
established the superiority of XGBoosting over artificial neu-
ral networks for classification of urban and covered areas in
satellite images.

3 PROPOSED METHODOLOGY

For this research work, we collected a dataset of 7000 style
images from the People-Art dataset [26], and we annotated
these images for 10-different objects. We further train our
proposed model for cross-domain object detection in the
StyleObject images, going on testing the model on datasets of
clipart, watercolors, and comic images, as proposed by [36].
At the first stage of the pipeline, our work includes YoloV5
architecture for detecting objects, while in the second stage
True-negatives and False-positives are suppressed using “gra-
dient boosting,” which gives more emphasis on the difficult
samples. We establish the validity of our method by using the
above-mentioned datasets. Taken together, our work makes an
attempt to take a step forward in developing computer vision
algorithms that could learn more general representations of
objects, leading to robust object detection in images and videos.
The pipeline and flow of work for our proposed method is
explained in Figure 2.

3.1 YoloV5 for styleobject detection

YoloV5 is considered to be one of the most efficient models
in the Yolo family with faster speed and less memory size. We
will briefly discuss the key aspects of YoloV5, which makes it an
excellent choice over other object detectors. YoloV5 is largely
divided into three key components, including (i) a Backbone
architecture, (ii) a feature-pyramid (PANet) as the Neck layer
and (iii) prediction head layers for final object detection. A Cross
Stage Partial Darknet (CSPDarknet53) as backbone architecture
maximizes the functionality for feature aggregation. The result-
ing aggregated features are then passed on to the PANet in
the neck layer. Meanwhile, the head convolutional layers gen-
erate predictions from the anchor boxes for object detection.
CSPDarknet53 is efficient in solving the problem of repeated
gradient information in backbone architecture by integrating
gradient changes with feature maps and thus reducing the model
parameters and FLOPs (floating-point operations per second).
On the one hand, this parameter reduction decreases the storage
size of the model, while on the other hand, it avoids the over-
fitting problem, thus increasing the average precision. The Path
Aggregation Netwok (PANet) smoothly propagates low-level
features in the neck layer by adopting a new Feature Pyra-
mid Network (FPN) structure. At the same time in the lower
layers of the feature pyramid, PANet accurately utilizes the
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FIGURE 2 Our proposed methodology comprises of four blocks: (1) CSPDarkNet as backbone architecture; (2) Neck: PANet; (3) Prediction Head: Yolo
layer; (4) XGBoosting. The data is first input to CSPDarkNet for extracting features, then these features are fused using PANet. The Prediction head computes the
class prediction and localization scores. Finally, XGBoosting computes the loss and boosts the weight for different samples, while down-weighting easy samples.

localization signals which can be helpful to better locate objects
in the image. Typically, shallow layers have higher feature dimen-
sion and are thus good at detecting low-level features, for exam-
ple, edges and textures; meanwhile, deeper layers with a small-
sized feature map detect high-level features as complex texture
and shapes. In YoloV5, prediction heads generate four different
size feature maps, and thus the model can predict small, medium
and large objects at multiple scales, [20]. While dealing with art-
work images using central perspective, for example, it could
happen that distant objects look smaller while nearby objects
look larger in artwork image, and therefore, a multi-scale predic-
tion head can be beneficial to better handle such images. YoloV5
leverages Stochastic Gradient Decent (SGD) and ADAM for
network optimization while harnessing binary cross-entropy
as a loss-function during training. YoloV5 is an improvement
to YoloV4 and has several advantages over previous Yolo
versions for easy Pytorch setup installation, simpler directory
structure and smaller storage size, [37]. In YoloV5, a genetic
algorithm automatically learns the sizes of anchor-boxes while
the previous Yolo versions take fixed size anchor boxes only.

There are five different versions available for YoloV5, which
are YoloV5s, YoloV5n, YoloV5m, YoloV5l and YoloV5x. The
working principle for these architectures are the same but
they differ in their memory storage size. YoloV5x claims the
largest memory size and YoloV5n is the smallest in storage
size. For this research work, we experiment with three variants,
including YoloV5s, YoloV5m and YoloV5l; as for now, there
is no such storage constraint for object detection in artwork
image applications.

3.2 XGBoosting classifier

XGBoosting includes parallel computation by using parallel
tree building. This makes sense as trees can easily be imple-
mented using parallel processing in CPU and GPU machines.

Contrary to other methods like Gradient Boosting Machines
(GBM), XGBoosting implements “max-depth” which results in
an improvement of computational performance. XGBoosting is
robust to missing data values during training and can better han-
dle sparse data [38]. Caruana et al. [39] carried out a comparative
study for different machine learning algorithms like random
forest, logistic regression, SVM and found that XGBoosting
performs better than all algorithms used in comparison. These
above-mentioned descriptions constitute the rationale for using
XGBoosting for this research work.

The underlying principle of XGBoosting is that it assigns dif-
ferent weights to different observations, emphasizing weights
for difficult to classify samples while assigning less weights to
easily handled samples. Weak-learners are sequentially added in
a manner for focusing the training on difficult to classify sam-
ples. XGBoosting comprises (i) a loss function for optimization,
(ii) a weak learner classifier, and (iii) an additive model to add up
the weak learners. XGBoosting can accommodate squared error
for regression loss of localization and logarithmic loss for clas-
sification in object detection. We treated the above-mentioned
YoloV5 as a weak classifier because its performance was slightly
higher than 50% (slightly higher than random guess). Therefore,
a weak detector (i.e. YoloV5) is combined with XGBoosting
which reduces the detection loss. XGBoosting uses gradient
descent for minimizing the loss function and subsequently
updates the weights of each weak detector.

3.3 Handling of difficult samples using
XGBoosting

Training hard and complex samples using hard-mining is car-
ried out by [40–42] using complex sampling and a re-weighting
scheme. Lin et al. [43] proposed focal loss for mitigating the
weights of well-classified samples and for focusing on hard
samples during training.
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FIGURE 3 We explain our pipeline of work for the cross-domain object detection. At the first stage, object proposals are generated for the Target domain
using a detector, which are fed to a classifier in the second stage for Pseudo-labelling. In the third stage, an improved detector predicts the final labels for the Target
domain.

XGBoosting builds a new model which reduces the errors
and residuals of previously built models. Using a bag-of-samples
approach, XGBoosting computes the detection loss for difficult
samples and then tries to build better learning by increasing the
frequency of such difficult samples for better detection.

For difficult samples, it is hypothesized that they can be
handled better by combing XGBoosting with weak learners.
XGBoosting handles the difficult samples by imposing the con-
straints on a weak learner built to choose only a smaller number
of features, fmin. Using the method this way, each such weak
learner serves as the feature selection unit. A weak learner
minimizes the mis-classification examples by determining the
optimal threshold value. For a weak classification learner, k j (x ),
having a set of features, f j , a threshold 𝜃 j and a polarity p j for
the direction of inequality sign,

k j (x ) =

⎧
⎪
⎨
⎪
⎩

1, p j f j (x ) < p j𝜃 j

0, otherwise
(1)

where x is the size of feature map of the detector.

3.4 Cross-domain StyleObject detection

We extend our work for cross-domain object detection where
we train our model on the source-domain of the StyleOb-
ject7K dataset and then detect objects in the target-domains of
the Clipart, Watercolor, and Comic2K datasets using pseudo-
labelling. Domain adaptation attempts to align the source and
target feature distributions such that the difference between
two distributions is minimum in the high-dimensional feature
space. The pipeline of our work is shown in Figure 3. For the
StyleObject7K dataset as source-domain S , we provide images
and annotations, but for the target domain datasets T only the
images are provided (no labels in T ).

In Figure 3, the first stage comprises two-parallel networks
which detect object proposals for the target domain and ground
truth for the source domain which mathematically is defined as,

PS = f (S ,W ) (2)

PT = f (T ,W ) (3)

The detection network f is identical and initialized with the
same weight distribution W , for two different datasets as X1
and X2.

In the second stage, a classification model is trained using
the ground truth prediction of S . This classifier generates the
pseudo-labels for object proposals in T . The main reason for
employing this classifier is to rely on representations differ-
ent from the first stage detector, which may help the third
stage detector.

4 EXPERIMENTAL SETUP

4.1 Datasets

StyleObject7K dataset: We trained our model on the StyleOb-
ject7K dataset, which contains 7000 stylized images. The dataset
is annotated for 10 different object categories, including per-
son, train, umbrella, car, horse, bike, motorbike, laptop, bus, and
sheep. Among these 7000 images, 5000 images were used for
training, while the remaining 2000 images were equally divided
into the validation and test set. To provide an impression of
this dataset, the number of instances for each category is listed
in Table 1. There is a class imbalance in this dataset, with the
person class dominating over other classes, as this dataset was
originally derived from the People-Art dataset [26].

ClipArt1K: The Clipart1k dataset was devised by [44]
with images collected from CMPlaces [45] and two other
image search engines, Openclipart2 and Pixabay3. This dataset
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TABLE 1 The StyleObject7K dataset contains 10 object classes ranging in frequency from hundreds to thousands of instances.

All Person Car Umbrella Motorbike Bus Horse Laptop Bike Train Sheep

19268 8910 2857 1472 1410 1342 1196 688 668 594 131

TABLE 2 The Detection Performance using the baseline model—This
table presents the average and best values of Precision, Recall and mAP as
the performance metrics for StyleObject7K dataset.

Precision (%) Recall (%) mAP (%)

Average value 68.3±1.81 55.8±2.07 58.9±2.17

contains 1000 images, including a resemblance of eight object
categories with the categories of the StyleObject7K dataset,
including the classes of person, train, car, horse, bike, motor-
bike, and sheep which are found in both datasets.

Comic2k and Watercolor2k: Collected from a large dataset
of 2.5 million images, Behance Artistic Media (BAM) [46], the
Comic and Watercolor datasets were also created by [44]. They
contain 17,814 watercolor images and 52,790 comic images,
respectively. There is an overlap between three class categories
(person, car, and bike) in the StyleObject7k, the Comic2k and
the Watercolor2k datasets. From this, [44] have “randomly”
collected and annotated 2000 images to constitute the Comic
and Watercolor datasets.

4.2 Implementation details

We run our experiments using the Pytorch machine learning
library [47] with the Python 3.7 version. The experiments were
run for a maximum of 200 epochs with an initial learning rate
of 0.001 which was reduced by one-tenth after one-third of
an epoch. The batch-size was set as 32 and sub-division as
2, whilst stochastic gradient descent (SGD) was used as opti-
mization solver with a momentum of 0.9 and weight-decay of
0.0005. We trained our model with a Tesla P100-PCIE GPU and
CUDA version 11.2, [48]. XGBoosting was trained using 200
trees of maximum depth of 5 and a learning rate of 0.0001. We
implemented XGBoosting using the Scikit-learn python library.

We used Precision, Recall and mean Average Precision (mAP)
as the metrics for measuring the performance of our proposed
model for different datasets. mAP is the average of a series

of scores at different IoU thresholds from 0.50 to 0.95 with a
uniform step size of 0.05 for all the categories.

5 RESULTS AND DISCUSSION

5.1 Baseline results

We define our baseline model as trained on a randomly sam-
pled training set and testing set. We excite our baseline model
with 3-channel RGB-images. We report the performance for
our baseline model in terms of Precision, Recall and mean aver-
age precision (mAP) in Table 2. Moreover, the baseline model
is excited with the same hyper-parameters as for the rest of
experiments. We present the visualization of detection results
using the baseline model in Figure 4. At the same time, we also
list average precision for each class using the baseline model
in Table 3. The performance of our proposed model varies by
varying the confidence score and this change in performance
with the confidence score is shown in Figure 5. The highest class
precision (67.2%) for all classes was obtained for a confidence
score of 0.437.

5.2 Testing on difficult samples of the
StyleObject7K dataset

We evaluate the performance of our proposed model on dif-
ficult samples and manually identified the hard instances from
the StyleObject7K dataset and put them in the test set. These
hard samples were even difficult to correctly detect and recog-
nize by humans. We trained our model on simple and easy to
detect samples from the StyleObject7K dataset. In this ablation
study, we explain that by training our model on easy samples,
can even work well and detect objects in a test set compris-
ing difficult samples. The quantitative results of this study are
listed in Table 6. Meanwhile, the qualitative detection results
on difficult samples of the StyleObject7K dataset are shown in
Figure 8-a.

FIGURE 4 This figure presents Positive detection using the baseline model for the StyleObject7K dataset.
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TABLE 3 Per-class Detection Performance—This table presents mAP for each class using the baseline model for the StyleObject7K dataset.

mAP (%) for each class

Person Car Train Umbrella Bus Bike M.Bike Horse Sheep Laptop mAP

0.82 0.68 0.72 0.65 0.78 0.64 0.59 0.57 0.63 0.75 0.683

FIGURE 5 Confidence-versus-Precision plot—The detection performance varies for different values of confidence score for different classes in
StyleObject7K dataset.

5.3 Data augmentation

In deep learning, data augmentation techniques are helpful
for improving the performance of datasets, which are small-
sized and lacking diversity, thus resulting in high-bias and
low-variance. Data augmentation makes sense in our case,
since the datasets used throughout this study are probably not
comparable to other commonly-used datasets in standard deep
learning research, such as, the MNIST, the CIFAR dataset or
the ImageNet dataset. Due to the nature of our datasets, data
augmentation could be very helpful toward low-bias and high-
variance, thus resulting in better generalization of the model
for our test-set images. As images contain objects in different
orientations shown in Figure 6, we identified and sorted out cer-
tain types of data transformations, such as rotation, translation,
scaling, horizontal and vertical flip. Image rotation helped to
augment the data by perturbing the angle in the range between
-90◦ to+90◦ with an offset of 10◦, and a small translation offset
up to 5% of the patch size was added. The image was scaled up
to to 50% of the image size, meanwhile the horizontal flip was

more frequently exercised, since vertical flips appear less fre-
quently (i.e. turning a human or a bus upside down completely.)
The quantitative results using data augmentation are listed in
Table 4.

5.4 Cross-dataset generalization

In this experiment, we first train the model on the StyleOb-
ject7k dataset and then test its performance on the same and
other datasets. In cross-dataset generalization, we realized that
the StyleObject7K dataset performed better for the ClipArt1K
dataset since it most closely resonates with the StyleObject7K
dataset in terms of features, and moreover, there were seven
classes similar in both datasets. The ClipArt1K and Comic2K
datasets have good generalization for the Watercolor2K dataset
due to visual similarity of images in both datasets. Training on
Watercolor2K showed better generalization performance for
the ClipArk1K dataset. It was quite obvious that our proposed
method exhibited best results when trained and tested on the
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2444 AHMAD and SCHICH

FIGURE 6 Data augmentation for various orientations—The data augmentation is required because artwork images may contain objects in different
orientations.

TABLE 4 Detection performance for data augmentation—We present a performance comparison without and with data augmentation. We noticed a rise in
performance metrics when we use data augmentation.

Without augmentation With augmentation

Precision Recall mAP Precision Recall mAP

ClipArt1K 66.1±0.80 54.5±0.7 57.0±2.01 66.9±1.40 55.1±1.37 58.0±0.39

Comic2K 68.0±1.20 58.5±0.4 61.2±2.73 70.3±1.90 59.0±1.98 62.1±0.24

Watercolor2K 70.1±0.67 65.5±0.9 67.0±1.87 72.2±0.94 67.1±1.95 67.5±0.56

FIGURE 7 Cross-dataset performance comparison—Our proposed deep learning model was trained on one dataset and then validated on all other datasets.

same dataset. A cross-dataset generalization performance for
aforementioned datasets is shown in Figure 7.

5.5 Full StyleObject12K dataset

We move a step further and aggregate the images from all the
aforementioned datasets and then divided the images into train-
ing, validation and testing sets with a ratio of 70%, 15% and 15%

respectively. The main objective of this experiment is to mix and
incorporate the features from different style image datasets and
then train the model for achieving a better generalization on dif-
ferent datasets, since each one of them contains some particular
genre of artwork images. This unified dataset contains 12,000
images in total, with 7000 images from StyleObject7K, 1000
images from ClipArt1K, 2000 images from Comic2K and 2000
images from Watercolor2K. During training, feature aggrega-
tion was carried out by shuffling the input mini-batch based
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AHMAD and SCHICH 2445

FIGURE 8 We trained the model on StyleObject7K dataset, while tested
on different artwork image datasets.

TABLE 5 The detection performance on the full dataset—The network is
trained on a holistic dataset by mixing all the images from the StyleObject7K,
ClipArt1K, Comic2K and WaterColor2k datasets, followed by randomly
sampling images in each mini-batch. The detection performance is reported in
terms of Precision, Recall and mAP.

Precision (%) Recall (%) mAP (%)

Average value 69.7±1.54 57.8±4.47 60.6±3.71

TABLE 6 The detection performance on difficult samples—The network
is trained using easy samples of the StyleObject7K dataset while tested on the
difficult samples of the StyleObject7K dataset. The detection performance is
calculated in terms of Precision, Recall and mAP.

Precision (%) Recall (%) mAP (%)

Average 67.2±2.87 53.2±3.26 57.3±3.99

on attribute labels and then randomly selecting samples from
the input and shuffled mini-batches. Our proposed method
performed well, and the results are listed in Table 5.

5.6 Ablation study

We carry out ablation studies where first we compare the perfor-
mance of different YoloV5 architectures, and then the second
study entails the significance of XGBoosting architecture in our
proposed methodology.

Comparison between YoloV5 architectures:
We trained our model on three different Yolo versions, that is,
YoloV5n, YoloV5m and YoloV5l. The YoloV5n architecture is
the smallest in size and is an ideal choice for real-time embedded
applications. YoloV5m performs slightly better than YoloV5n,
but it requires larger model storage and computational power.
YoloV5l performs even better than YoloV5m, but definitely
requires larger storage size and computational resources. As far
as the current circumstances are concerned, use cases for real-
time applications of art-work image detection or segmentation
may be rare, but in the future may be required as dynamic art and
computer animation is increasingly automated. Consequently,
more compact Yolo models, which could be applied in such real-
time applications are likely to become desirable. Indeed, here
lies a major possible application for our approach, as generative
art may produce images with objects, whose creation, perfor-
mance, and appreciation may depend on fast automated object
detection as introduced here. A comparison using different Yolo
architectures is presented in Table 7.

Comparison with/without XGBoosting:
We further make a copy of our proposed architecture by exclud-
ing XGBoosting and carry out an ablation study by comparing
the performance with and without the XGBoosting block. By
running our model, we noticed that using XGBoosting results
in the rise in average precision because it helps to suppress
false-positives and thus results in the rise in performance. A
quantitative comparison for the rise in accuracy is presented in
Table 8.

5.7 Comparison with the state-of-the-art

The StyleObject7K dataset can function as a newly proposed
public benchmark dataset for the evaluation of deep learn-
ing models in style images, including artworks. We compare
our proposed XGBoosting-YoloV5 method other methods for
the StyleObject7K dataset and other ClipArt1K, Comic2K and
Watercolor2K datasets in Table 9. Bilen et al. [49] proposed
a weakly supervised object detector, which was originally pre-
trained on the PASCAL VOC dataset when fine-tuned for
the ClipArt1K, Watercolor2K and Comic2K datasets. They
produce preliminary results of mean average precision. Context-
aware deep models were proposed by [50], which performed
slightly better than [49], due to additive and contrastive mod-
els that leverage the surrounding context regions of the objects
to improve localization. More recently, adversarial models have
performed very well. The authors in[51], for example, have
devised Adversarial Discriminative Domain Adaptation, which
combines discriminative modelling, untied weight sharing, and
GAN loss. This methodology resulted in a significant increase
in detection performance for the ClipArt1K, Watercolor2K and
the Comic2K datasets. Inoue et al. [44] implemented a weakly-
supervised object detection using domain-adaptation, arguing
that source and target domains differ due to their low-level fea-
tures, such as color and texture. This problem is overcome by
generating images similar to the target domain using CycleGAN
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TABLE 7 The detection performance for different Yolo architectures on the Full StyleObject12K dataset—The parameters are measured in millions (M),
average precision is measured in %, training time is measured in hours, and model size is measured in MB. In the names of YoloV5, the subscripts “n,” “m,” and “l”
refer to nano, medium, and large networks.

Layers Parameters Precision (%) Recall (%) mAP (%) Time Size

YoloV5n 213 1.75 64.3 55.0 61.7 5.5 3.7

YoloV5m 290 20.1 69.7 58.8 63.4 12.2 71.0

YoloV5l 367 44.5 72.1 60.1 65.0 17.1 92.1

TABLE 8 The detection performance without/with XGBoosting—Using
XGBoosting with YOLOV5 results in substantial rise in Precision, Recall and
mAP.

Precision (%) Recall (%) mAP (%)

Without XGBoosting 68.3 55.8 58.9

With XGBoosting 78.5 57.8 63.4

[52], and fine-tuning the model on such images. This novel idea
works and results in significant rise in performance for the Cli-
pArt1K, Watercolor2K and Comic2K datasets. Our proposed
work inherently incorporates advantages of the aforementioned
methods, as the YoloV5 framework implicitly includes adversar-
ial training, while XGBoosting trains difficult samples by giving
them more weights, compelling the model to learn better. This
methodology suppresses false-positives and correspondingly

TABLE 9 A comparison of our proposed methodology with the contemporary methods on Stylized and Artwork image datasets.

Clipart1K - Average Precision (%) for each class

Person Car Train Bus Bike Motor-Bike Horse Sheep Umbrella Laptop mAP

Weakly-Sup DDN, [56] 14.4 4.5 1.2 11.7 3.6 0.1 0.9 4.5 – – 5.1

Contextlocnet, [57] 12.5 17.5 8.0 4.8 22.3 0.6 4.7 14.1 – – 10.6

Adversarial Domain Adapt., [58] 46.6 34.9 23.6 40.5 50.2 53.6 31.7 18.0 – – 37.4

X-domain weakly sup, [59] 61.1 44.0 38.4 53.0 60.1 62.2 40.4 20.9 – – 47.5

Proposed 82.0 68.3 72.4 75.8 63.0 64.4 78.7 59.9 – – 70.6

Watercolor2K—Average precision (%) for each class

Weakly-sup DDN, [56] 33.3 14.6 – – 1.5 – – – – – 16.5

Contextlocnet, [57] 31.4 19.6 – – 4.5 – – – – – 18.5

Adversarial Domain Adapt., [58] 65.1 39.5 – – 79.9 – – – – – 61.5

X-domain weakly sup, [59] 62.5 40.2 – – 82.8 – – – – – 61.8

Proposed 75.0 72.1 – – 63.2 – – – – – 70.1

Comic2K—Average precision (%) for each class

Baseline, [59] 42.6 19.4 – – 43.9 – – – – – 35.3

X-domain Weakly-sup, [59] 48.3 30.2 – – 43.6 – – – – – 40.7

Proposed 73.4 69.6 – – 61.0 – – – – – 68.0

StyleObject7K—Average precision (%) for each class

Weakly-sup DDN, [56] 73.7 55.8 52.4 41.4 42.7 39.8 47.8 38.2 59.9 49.1 50.1

Context-locnet, [57] 78.0 65.5 60.1 49.0 61.1 45.8 43.3 41.7 58.6 47.9 55.3

X-domain weakly sup, [59] 80.6 63.2 68.4 65.0 62.0 55.6 54.5 55.0 60.6 64.8 62.9

Proposed 82.4 68.0 72.2 78.1 64.4 59.6 57.0 62.7 63.6 74.6 68.5

increases true-positives. Consequently, our method improves
overall detection accuracy for the above-mentioned datasets.

Applying a weakly supervised object detector [49] on the
StyleObject7K dataset results in 55.6% mAP, which was sur-
passed with 60.7% when a context-aware deep network [50]
was used. Domain adaptation combined with weakly supervised
learning resulted in a further rise and raised the mAP to 62.9%.
Through quantitative comparison in Table 9, it is evident that
our proposed XGBoosting-YoloV5 performs better than other
methods for the newly proposed StyleObject7K dataset.

5.8 Applications

Our research on object detection in stylized images, as pre-
sented here, can be helpful toward art image understanding,
as well as for art image to text generation and captioning. The
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AHMAD and SCHICH 2447

proposed object detection and localization in non-photographic
images can extract metadata, that promises to be useful in
the domain of cultural heritage and museums [53, 54], the art
market and online collections [55]. The proposed object detec-
tion in stylized images can be extended to include different
object categories, as found in the MS COCO dataset. However,
[26] noticed that human individuals are over-represented in art
images, and sometimes, it may become challenging to search
for other object categories with sufficient numbers of exam-
ples. Our work can further be improved via boot-strapping,
for example through harnessing large-scale (art) image collec-
tions that are annotated via crowd-sourcing or through visual
resource librarians, feeding into final machine learning model
adjustments and corrections. The results from studying com-
puter animation and video game content, while using our
method, further promises advances, which in turn can be fur-
ther applied toward a deeper understanding of more static visual
products of cultural heritage and art.

6 CONCLUSION

In this research work, we proposed a refined method for cross-
domain object detection in stylized images including stylized
natural images, clipart, watercolor, and comic images. We inves-
tigate YoloV5 for this purpose, where the Yolo model is trained
on the StyleObject7K dataset using gradient-boosting and then
evaluated on the ClipArt1K, Watercolor2K, and Comic2K
datasets for cross-domain detection. We performed thorough
experimentation, carried out a detailed ablation study and com-
pared our results with other state-of-the-art methods, which
establishes that the proposed model performs better. In future
work, we aim to extend the StyleObject7K dataset and will
include more images in it. Furthermore, we plan to extend our
studies to include artwork images, such as a 65K benchmark
abstract art of Art500K and WikiArt, as used in another stream
of work within our research group [60]. Finally, we also plan to
advance our investigation through the inclusion of more recent
and emerging deep learning models.
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