
1Scientific Data |          (2025) 12:254  | https://doi.org/10.1038/s41597-025-04529-4

www.nature.com/scientificdata

fruit-SALAD: A Style Aligned 
Artwork Dataset to reveal similarity 
perception in image embeddings
Tillmann Ohm1,2 ✉, Andres Karjus2,3,4, Mikhail V. Tamm1,4 & Maximilian Schich4,5

The notion of visual similarity is essential for computer vision, and in applications and studies 
revolving around vector embeddings of images. However, the scarcity of benchmark datasets poses a 
significant hurdle in exploring how these models perceive similarity. Here we introduce Style Aligned 
Artwork Datasets (SALAD), and an example of fruit-SALAD with 10,000 images of fruit depictions. 
This combined semantic category and style benchmark comprises 100 instances each of 10 easy-to-
recognize fruit categories, across 10 easy distinguishable styles. Leveraging a systematic pipeline 
of generative image synthesis, this visually diverse yet balanced benchmark demonstrates salient 
differences in semantic category and style similarity weights across various computational models, 
including machine learning models, feature extraction algorithms, and complexity measures, as well as 
conceptual models for reference. This meticulously designed dataset offers a controlled and balanced 
platform for the comparative analysis of similarity perception. The SALAD framework allows the 
comparison of how these models perform semantic category and style recognition task to go beyond 
the level of anecdotal knowledge, making it robustly quantifiable and qualitatively interpretable.

Background & Summary
Similarity perception is an abstract and complex concept that differs widely across mental and computational 
models, as explored in (computational) neuroscience1,2, computer vision3–6, or (computational) cognitive sci-
ence7,8. For mental and conceptual models, similarity refers to resemblance or alikeness and describes groups 
with some shared properties, as prominently outlined in Wittgenstein’s remarks on family resemblance9,10. 
Conversely, in computational models, similarity denotes proximity and is conventionally defined as inversely 
correlated with distance between data points in a metric space.

Computer Vision applications heavily rely on such visual similarity, often utilizing vector embeddings that 
set up a measurable multidimensional space to index images. In similarity learning the goal is to train mod-
els that can accurately capture the underlying similarities between data points, enabling tasks such as image 
retrieval or classification based on similarity metrics11–17. However, similarity in these contexts is often implied 
to be understood in a singular notion, overlooking the multifaceted nature of similarity perception crucial for 
informed decision-making in selecting models or methods. For instance, Ref. 18 utilizes CLIP19 and DINO20 
to evaluate subject fidelity of generated images, acknowledging the varying importance of different similarity 
aspects. It is generally considered that CLIP captures semantic relationships, while DINO focuses more on visual 
features. Yet, validating such assumptions poses a significant challenge.

Research in quantitative and computational aesthetics21–23, as well as the interplay of computation and human 
cultures24,25, requires reliable benchmark datasets that are interpretable by machines and humans. Previous work 
has relied on embeddings of large amounts of well known artworks26,27 or synthetic datasets of limited size28–31.

Benchmark image datasets for perceptual similarity judgment exist, with some relying on annotated text 
captions of real-world images32, while others utilize synthetic image triplets designed to better align with mental 
models6. However, these datasets primarily focus on specific tasks or aspects of similarity perception and align-
ment, such as zero-shot evaluation or similarity metric optimization.

Here we propose Style Aligned Artwork Datasets (SALAD), with the fruit-SALAD serving as an exemplar. 
This synthetic image dataset comprises 10,000 generated images featuring 10 easily recognizable fruit categories, 
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each represented in 10 visually distinct styles, with 100 instances each (see example set of one instance in Fig. 1). 
Developed as a benchmark tool rather than for training purposes, the dataset is constructed on two highly con-
trolled property dimensions – semantic (fruit category) and stylistic (artistic style) – that cannot be isolated at 
this level in existing real-world image datasets and therefore required image generation. The deliberate control 
over semantic and stylistic properties inherent to each image facilitates comparative analysis of different image 
embedding and complexity models, enabling an exploration of their similarity perception, only possible on scale 
through synthetic images.

We characterize the dataset through various machine learning models and measures of aesthetic complexity, 
showcasing how simple pairwise comparisons of image vectors can yield robust inter-comparable measures. Our 
examples reveal significant differences in similarity awareness across these methods and models, shedding light 
on anecdotal considerations stemming from differences in model or algorithm design, training data, parameter 
configuration, or similarity measures. In turn, this approach can be used to guide model training and alignment.

The fruit-SALAD offers opportunities for joint robust quantification and qualitative human interpretation, 
enhancing algorithmic and human perception regarding differences in measuring vector similarity and visual 
resemblance across computational, and statistical models. This approach allows for a more comprehensive 

Fig. 1  Overview of the first instance of 10 fruit categories in 10 styles. Columns display fruit categories and 
rows display style categories with labels trying to describe the style prompts. The full dataset contains 100 
instances of each category-style combination resulting in 10,000 unique fruit depictions. See Fig. 3 as an 
example for 100 instances of one combination.
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assessment of similarity perception, beyond the scope of existing benchmark datasets, ultimately contributing 
to a deeper understanding of computational and human similarity perception mechanisms.

Methods
Image generation.  We used Stable Diffusion XL (SDXL)33 and StyleAligned34 to create the fruit-SALAD 
by carefully crafting image generation prompts and supervising the automation process. Diffusion probabilistic 
models35 are typically trained with the objective of denoising blurred images. By leveraging their ability to itera-
tively refine images by processing random noise, these models can be used in conjunction with text prompts to 
generate images. Such Text-to-Image models, exemplified by DALL-E36, Midjourney and StableDiffusion37, have 
recently gained significant attention in various creative and commercial domains. These models and services have 
simplified the synthesis of high-quality individual images, enabling unprecedented ease of use through natural 
language. However, scaling the generation process or achieving stylistically consistent images remains challenging 
but can be improved by style alignment methods34 to coordinate shared attention across multiple generations 
based on a reference style image.

We utilized a computational approach to scale the image generation process (see Fig. 2). Initially, we exper-
imented in a trial-and-error fashion with different style prompts in conjunction with different fruit categories, 
using SDXL33 for image generation. Successful results were selected as style references. We then used style align-
ment34 to generate multiple instances of different fruits within the same style using diffusion inversion38 of the 
reference image. Through several iterations and adjustments to the prompts, we refined the process and eventu-
ally automated the generation to produce 100 instances for each fruit-style combination (see all 100 instances of 
one fruit-style example in Fig. 3).

The fruit prompts and stylistic references we selected were carefully curated to improve the robustness of the 
style alignment generation method. Among the fruit prompts, we balanced between fruit prototypicality and 
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Fig. 2  Overview of the image generation process. 1. Style reference image generation with Stable Diffusion 
XL33 in manual trial-and-error fashion using text prompts of style description in combination with “an apple”. 
2. Style aligned image generation34 based on each style reference image using diffusion inversion and text 
prompts iterating over 10 fruit categories generating 100 instances each, resulting in 10,000 images. 3. Manual 
curation with selection criteria examples: tolerated minor issues which do not impact recognition of category 
or style (green), and rejected major issues which are either unrecognizable or inconsistent across the style (red). 
The final step includes feature extraction to construct image embeddings for model comparison.
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variability across different stylistic prompts to ensure compatibility with generation on scale, while simultane-
ously covering a wide range of fruit shapes and colors. Similarly, our selection of stylistic references was based 
on their effectiveness in aligning with the generation space, focusing on those that demonstrated superior per-
formance in achieving stylistic coherence.

We maintained dataset quality by visually assessing the entire dataset in 100 batches of 10 by 10 image grids 
and manually replaced images that were inconsistent across all instances (see examples of the manual selection 
criteria in Fig. 2). Therefore, the final dataset with category and style classes may be biased by our own aesthetic 
arbitration, which is akin to the inherent specificity of a chosen set of handwritten digits39.

Image embeddings.  Our exemplary vector embeddings are derived from machine learning models and 
compression algorithms through various commonly employed methods (Table 1). For19,20,40–43 we extracted fea-
ture vectors using the flattened last hidden states. For44–46 we used average pooling from the second to last layer.

As an example of a quantitative aesthetics measure, we used the Compression Ensembles method21, which 
captures polymorphic family resemblance via a number of transformations (87 in our implementation). We 
used GIF image compression ratios, taking advantage of the Lempel–Ziv–Welch algorithm47. We also provide 
the PNG file sizes as comparison (Table 2).

To provide simple conceptual models for reference, we used binary, one-hot encoded vectors. In this encod-
ing scheme, each vector represents a fruit category or style, with a value of 1 indicating the presence and 0 

Fig. 3  All instances of fruit category 3 (apple) in style category 1 (Watercolor). Corresponds to 100 dataset files 
3_1_0.png to 3_1_99.png. Text prompt: “watercolor sketch of a gala apple, aquarelle, wet paint”.
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model short name type training set dimensions

ViT-B-16_IN21k Vision Transformer40 (base, 16 × 16) ImageNet-21k53 768

ViT-B-32_IN21k Vision Transformer40 (base, 32 × 32) ImageNet-21k53 768

ViT-H-14_IN21k Vision Transformer40 (huge, 14 × 14) ImageNet-21k53 1280

DINO_IN1k DINO20, Vision Transformer40 (base, 16 × 16) ImageNet-1k53 768

DINOv2-B_LVD DINOv241 (base) LVD-142M41 768

ResNet50_IN1k ResNet44 ImageNet-1k53 2,048

VGG19_IN1k VGG45 ImageNet-1k53 512

Xception_IN1k Xception46 ImageNet-1k53 2,048

ConvNeXt_L400M ConvNeXt43 (base) LAION-400M54 512

ConvNeXt-v2_L400M ConvNeXt-V242 LAION-400M54 320

CLIP-ViT-B-16_L2B CLIP19, Vision Transformer40 (base, 16 × 16) LAION-2B55 512

CLIP-ViT-B-32_L2B CLIP19, Vision Transformer40 (base, 32 × 32) LAION-2B55 512

CLIP-ViT-H-14_L2B CLIP19, Vision Transformer40 (huge, 14 × 14) LAION-2B55 1,024

CLIP-ViT-B-16_L400M CLIP19, Vision Transformer40 (base, 16 × 16) LAION-400M53 512

CLIP-ViT-B-16_OA CLIP19, Vision Transformer40 (base, 16 × 16) OpenAI (undisclosed) 512

CLIP-RN50_OA CLIP19, ResNet5044 OpenAI (undisclosed) 1,024

CLIP-RN101_OA CLIP19, ResNet10144 OpenAI (undisclosed) 512

Table 1.  Pre-trained machine learning models used for feature extraction.

model short name method dimensions

CompressionEnsembles Compression Ensembles21 87

GIF_compression LZW47 to PNG file size ratios 1

PNG_filesizes original PNG file sizes 1

style_blind one-hot encoding of fruit category only, ignoring styles 10

category_blind one-hot encoding of styles only, ignoring fruit category 10

balanced one-hot encoding of fruit category and styles 20

Table 2.  Other methods used for feature extraction.

Fig. 4  Self-recognition tests. Each cell represents the mean number of same instances in the top 100 nearest 
neighbors of its fruit category (column) and style (row) combination images. White cells without values have 
a perfect score of 100 out of 100 correctly recognized instances. Left: Maximum values from all computational 
models, taking into account that high scores within 100 out of 10,000 images reflect higher than chance results. 
Right: ResNet50_IN21k as an example model.
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indicating the absence of the corresponding category or style (Table 2). We are consciously providing a sim-
ple conceptual reference, to avoid the complications of full blown conceptual reference models, such as the 
CIDOC-CRM48.

Data Records
The fruit-SALAD_10k is available at Zenodo under record number 1115852249 (https://zenodo.org/
records/11158522). The repository includes 10,000 PNG files of fruit images (1024 × 1024 pixel), 10 PNG files 
of style reference images, 10 CSV files with text prompts, 100 PNG files of grid overview plots (10 × 10 images 
per instance), 23 CSV vector files, 23 PNG files of model heatmaps, 1 CSV file containing 23 model vectors and 
1 CSV file with index labels. We provide a detailed overview of all dataset repository files in Supplementary 
Fig. S2.

The 10,000 fruit image filenames adhere to the following format: fruit_style_instance.png. For exam-
ple, an image with the filename 8_1_42.png signifies fruit category 8 (avocado) rendered in style category 
1 (Watercolor), and it represents generation number 42.

Fig. 5  DINO-ViT-B-16_IN1k heatmaps indicating the mutual Mahalanobis distances of fruit-SALAD images. 
The matrix cells correspond to the mean of all 10,000 distance pairs of 100 by 100 instances of fruit-SALAD_10k 
images. Below the diagonal: sorted by style first and fruit category second. Above the diagonal: sorted by fruit 
category first and style second. The color indicates the pairwise Mahalanobis distance of image embedding 
vectors obtained from the respective model or algorithm, from low to high (blue to yellow) while low values 
indicate higher similarity. The figure construction is comprehensive as the matrices are symmetric; diagonal 
cells can be left out. See all model heatmaps in Supplementary Fig. S1.
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For accessibility, we provide all vector files as comma-separated values (.csv) with image file names as indices.

Technical Validation
Self recognition test.  One expects that, despite inevitable variation in similarity perception, the similarity 
of images from the same category-style combination should be systematically larger than between images of dif-
ferent categories and/or styles. To assess this, we conduct a self-recognition test on the fruit-SALAD_10k dataset. 
This test involves retrieving the top 100 nearest neighbors for each image and counting how many instances of 
the same category-style combination are found within this set. The average number of successful retrievals across 
all 100 instances per model is then calculated. To validate the self-recognition of image instances, we select the 
maximum values across all computational models (Fig. 4).

If a category-style combination cannot be sufficiently recognized in any of the computational models, we 
consider the self-recognition test failed. Notably, we found that “apples” and “oranges” in the “Watercolor” style 
pose the greatest challenge, achieving sufficient accuracy only after various iterations of image generation (see 
Fig. 3 for all 100 instances of the apple-Watercolor combination).

Model heatmaps.  We characterize the dataset, and concurrently exemplify its possible future use by a set of 
category- and style-ordered distance matrices, which demonstrate salient differences in category and style simi-
larity weights, across various computational models (Supplementary Fig. S1; see examples in Figs. 5 and 6). As a 
measure of similarity between two sets of images we calculate the average distances between all pairs of elements. 
To better generalize standardization, we use Mahalanobis distance50,51, which normalizes and decorrelates the 
coordinates.

Model comparison.  Each of the multiple embedding models can be characterized by a set of distances 
between images in this embedding. One can consider this set of distances as a multidimensional vector, char-
acterizing a model. Thus, the different models are represented as vectors in a shared space, which enables their 
direct comparison. As coordinates we used standardized pairwise distances between all unique pairs of 100 fruit 
category-style combinations, i.e., all entries of the model heatmaps. The principle components of the resulting 
embedding are shown in Fig. 7.

Investigating the differences in similarity perception can also be accomplished by examining fruit categories 
and styles through the image embeddings of individual models (Fig. 8). We provide an interactive exploration 

Fig. 6  Heatmaps indicating the mutual Mahalanobis distance of fruit-SALAD_10k images according 
to different models (see Fig. 5). Top row from left to right: CLIP-ViT-B-16_L400M, DINOv2-B_LVD, 
CompressionEnsembles. Bottom row from left to right: VGG19_IN1k, ViT-B-32_IN21, style_blind. The matrix 
ordering is identical.

https://doi.org/10.1038/s41597-025-04529-4


8Scientific Data |          (2025) 12:254  | https://doi.org/10.1038/s41597-025-04529-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

tool based on the Collection Space Navigator52 to visually compare such projections of model embeddings 
(https://style-aligned-artwork-datasets.github.io/fruit-explorer).

Code availability
Code performed to generate the fruit images is available at https://github.com/Style-Aligned-Artwork-Datasets/
fruit-SALAD. The GitHub repository entails all necessary files and implementations to reproduce the fruit-
SALAD benchmark dataset.
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